Quantitative Epistemology: Conceiving a new human-machine partnership

Mihaela van der Schaar

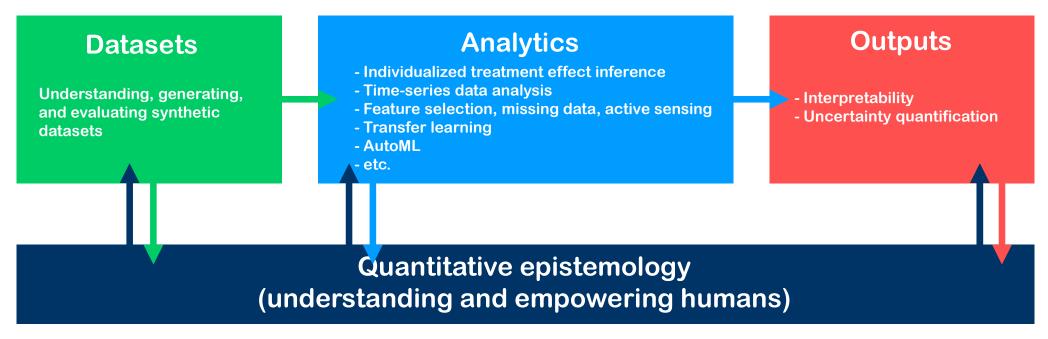
John Humphrey Plummer Professor of Machine Learning, Artificial Intelligence and Medicine, University of Cambridge

vanderschaar-lab.com

mv472@cam.ac.uk

linkedin.com/in/mihaela-van-der-schaar/

Our group's research agenda: New ML aimed at revolutionizing healthcare



Explaining the name...

Refers to things that can be measured

The study of knowledge

Inverse decision modeling (understanding humans)

- Understanding, explaining & auditing decisions
- Giving quantitative accounts of past behavior
- Identifying "suboptimal" behavior
- Analyzing variation in practice
- Improving policies

Conventional decision-making analysis (replacing humans/guiding humans)

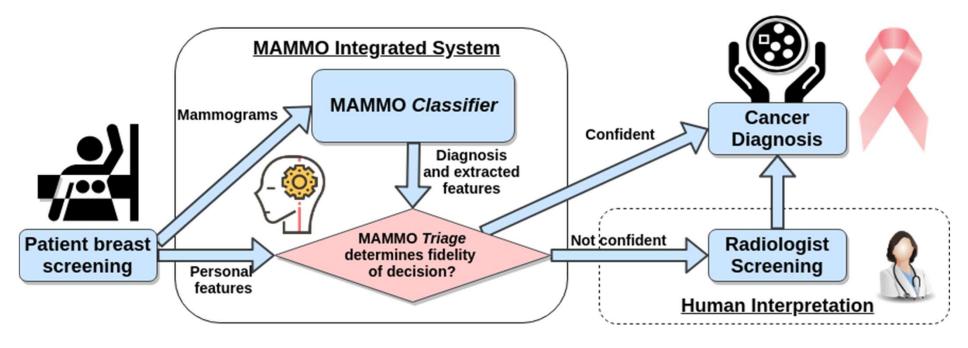
- Optimal control
- Reinforcement learning
- Apprenticeship learning
- Imitating behavior

Quantitative Epistemology (partnering with & empowering humans)

- Help humans acquire better information
- Direct humans towards the right information
- Help humans evaluate and integrate diverse sources of information and turn them into decisions
- Learn various knowledge representations that humans use
- Identify each individual's internal knowledge models and make the best use of that knowledge
- Representations to use when interacting with humans
- Aid human communication
- Help humans learn
- ι.

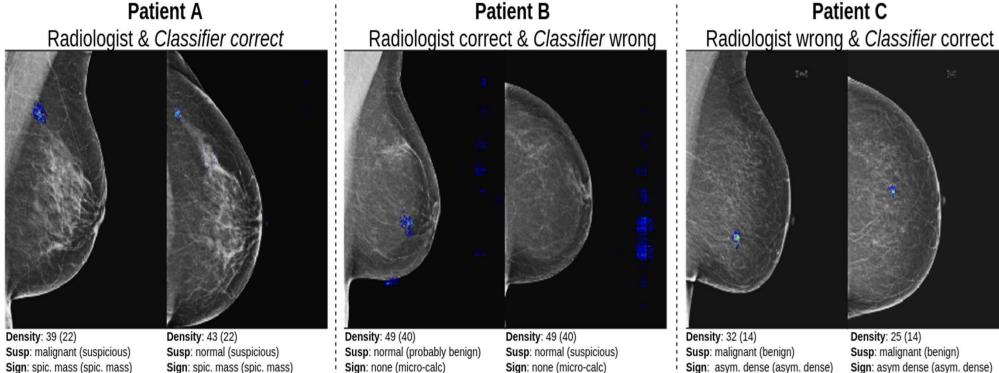
MAMMO: a framework for human-ML cooperation

[Kyono, vdS, ML4HC 2019] [Kyono, Gilbert, vdS, JACR, 2019]



Machine learning for mammography article named "Best of 2020" by JACR

Who is better? Human (radiologist) or machine (classifier)?



Cons: not visible (barely)

Cons: visible (visible)

Cons: visible (visible)

Cons: not visible (visible)

- Sign: asym. dense (asym. dense)
- Cons: visible (visible)

Density: 25 (14) Susp: malignant (benign) Sign: asym dense (asym. dense) Cons: visible (visible)

MAMMO enables various cooperation modes between humans and machines

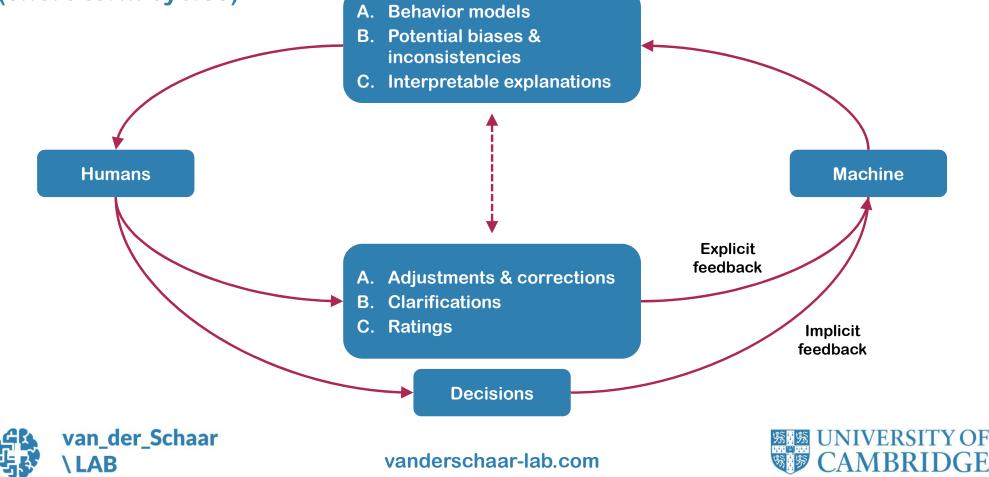
MAMMO – Cooperation modes

- 1. Radiologist + Classifier both activated as <u>double readers</u>
- 2. Radiologist + Classifier triaging operating as a single reader (hybridized)

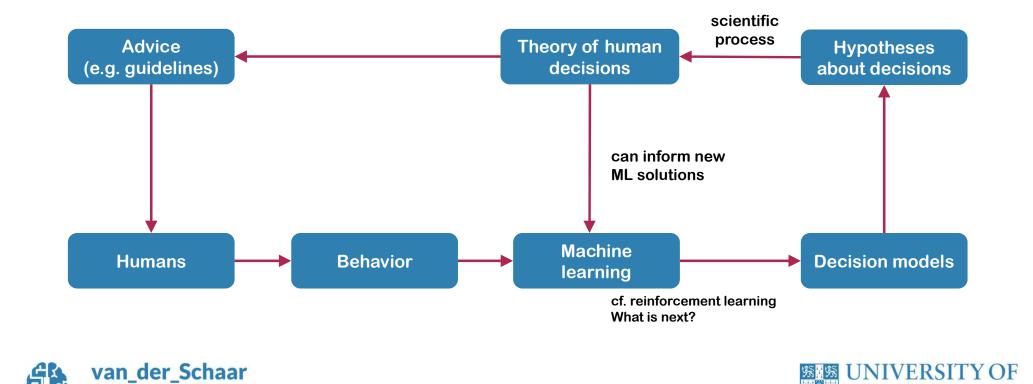
	Radiologist patients	Classifier patients	Cohen's κ	F1 score	TP	TN	FP	FN
Radiologist	1000	0	0.708	0.755	120	802	42	36
Classifier	0	1000	0.420	0.433	61	811	33	95
$Classifier^{\otimes}$	1000	1000	0.647	0.708	125	772	72	31
MAMMO	456	544	0.724	0.766	118	810	34	38

New human-machine partnership: Online operation

(short-term cycles)



New human-machine partnership (long-term cycles)



vanderschaar-lab.com

BRH

LAB

Quantitative Epistemology: Our work so far

		IDM framework (ICML'21)						
	Agent = human							
Method	Goal / motivating question	Planner	Normative params.	Descriptive params.				
IAS (ICML'20)	How "timely" is agent decision making?	Timely active sensing	Deadline, cost of acquisition	Importance of accuracy, speed, efficiency				
AVRIL (ICLR'21)	What reward function does the agent optimize?	RL planner	-	Reward function				
CIRL (ICLR'21)	How important are various counterfactuals in making decisions?	Counterfactual RL planner	Counterfactuals	Importance weights				
INTERPOLE (ICLR'21)	What are the subjective beliefs of the agent?	Policies based on decision boundaries	Interpretable state space	Decision dynamics & decision boundaries				
IBRC (ICML'21)	How optimal is agent behavior relative to an "ideal" reward function?	Bounded rational planner	"Ideal" reward function	Flexibility, optimism, adaptivity				
ICB (submitted)	How does agent's behavior evolve over time?	Contextual bandit strategies	-	Time-varying beliefs over reward functions				

vanderschaar-lab.com

Inverse decision modeling (IDM) – Learning Interpretable Representations of Behavior

Human decision-making is not perfect

bounded rationality, cognitive biases

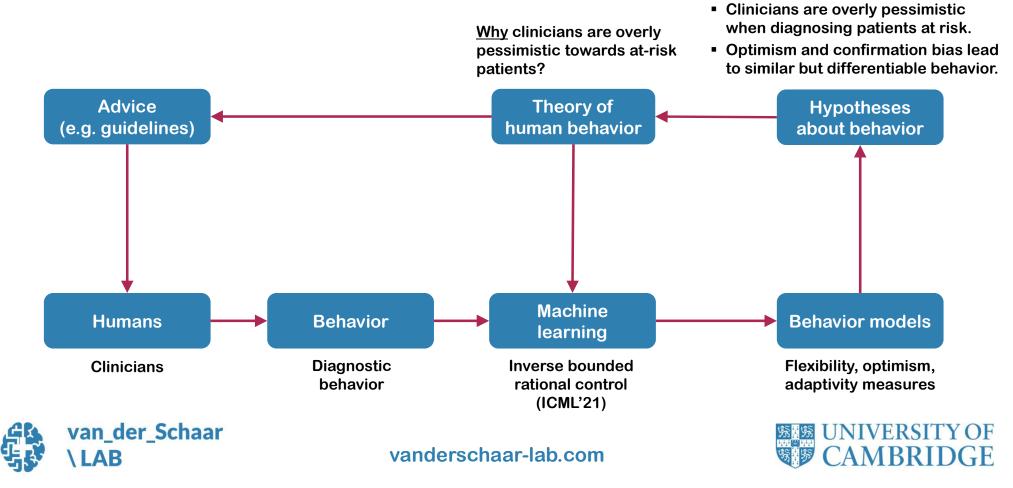
How can we help humans make better decisions?

requires a quantitative account of the "imperfections" that necessitate correcting

Inverse decision modeling

- general framework for learning representations of decision-making behavior
- enables us to describe existing behavior relative to "ideal" behavior

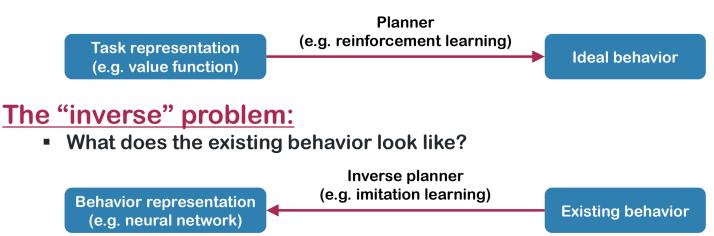
New human-machine partnership within the IDM framework (long-term cycles)



Conventional decision-making analysis

The "forward" problem:

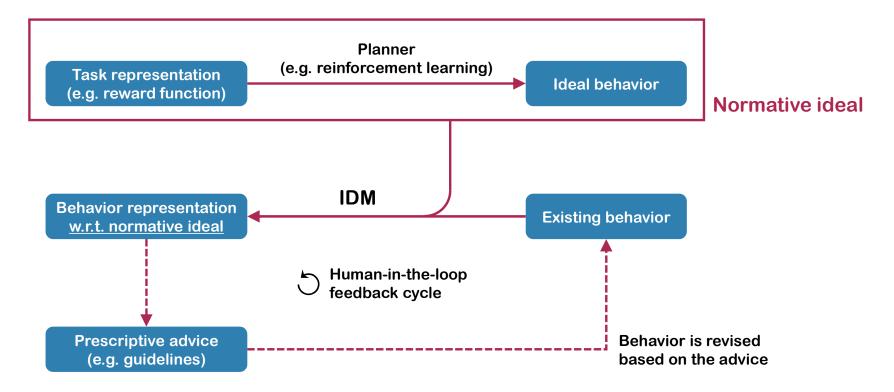
What constitutes ideal behavior?



Existing solutions offer limited help

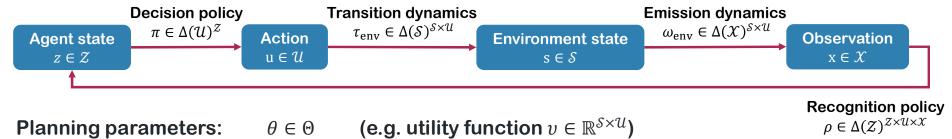
- forward solutions do not take human behavior into account
- inverse solutions focus on imitating human behavior

Inverse decision modeling



Planners

Problem setting:



Behavior:

$$\begin{array}{l} \theta \in \Theta \quad \quad \text{(e.g. utility function } v \in \mathbb{R} \\ \phi_{\pi,\rho} \in \Phi = \Delta(\cup_t (\mathcal{X} \times \mathcal{U})^t) \end{array}$$

(Forward) planner:

$$F(\theta) = \phi_{\pi^*,\rho^*}$$
 where $\pi^*, \rho^* = \operatorname{argmax}_{\pi,\rho} \mathcal{F}(\pi,\rho;\theta)$

• e.g. reinforcement learning: $\mathcal{F}(\pi; \theta) = \mathbb{E}_{\pi}[\sum_{t} v(s_t, u_t)]$

Inverse planners

- Demonstrated behavior:
- Normative/descriptive params.:

$$\phi_{\text{demo}} \in \Phi$$

$$\theta = (\theta_{\text{norm}}, \theta_{\text{desc}}) \in \Theta = \Theta_{\text{norm}} \times \Theta_{\text{desc}}$$

Inverse planner:

$$\hat{\theta}_{desc} = \operatorname{argmax}_{\theta_{desc}} \mathcal{G}(\phi_{demo}, \phi_{imit} = F(\theta_{norm}, \theta_{desc}))$$

- e.g. distribution matching: $\mathcal{G}(\phi_{\text{demo}}, \phi_{\text{imit}}) = -D_{\text{KL}}(\phi_{\text{demo}} || \phi_{\text{imit}})$
- projection of ϕ_{demo} onto $\Phi_{\theta_{norm}} = F(\theta_{norm}, \Theta_{desc})$
- Subsumes a wide range of algorithms
- Opens up new possibilities for interpretative research on decision making

An application of IDM

Inverse reinforcement learning

- F = the RL planner
- $\theta_{norm} = \emptyset$
- $\theta_{desc} = v$ (reward/utility function)
- $\mathcal{G}(\phi_{\text{demo}}, \phi_{\text{imit}} = F(v)) = \mathbb{E}[V_v(\phi_{\text{demo}}) V_v(\phi_{\text{imit}})]$

How "rational" does ϕ_{demo} appears to be in pursuing (the "ideal") v?

- *F* = a bounded rational planner
- $\theta_{\rm norm} = v$
- θ_{desc} = measures of "rationality"
- Appropriate inverse planner G
- Inverse rational bounded control

Bounded rational control

Uncertain knowledge of the environment

- Unbiased prior: $\tilde{\sigma} \in \Delta(\mathcal{T}, \mathcal{O})$ Biased specification policy: $\sigma(z, u) \in \Delta(\mathcal{T}, \mathcal{O})^{Z, \mathcal{U}}$

Recognition policy is given in terms of specification policy

- $\varrho(z'|z,u) = \mathbb{E}_{\tau,\omega\sim\sigma(z,u),x'\sim\omega}[\rho_{\tau,\omega}(z'|z,u,x')]$
- $\rho_{\tau,\omega}$ could be Bayesian inference under perfect knowledge τ, ω

Bounded rational planner:

maximize $\mathbb{E}_{\pi,\rho,\sigma}[\sum_t v(s_t, u_t)]$ **s.t.** $\mathbb{E}_z[D_{\mathrm{KL}}(\pi(\cdot |z)||\tilde{\pi})] < A$ \longrightarrow Decision complexity $\mathbb{E}_{z,u}[D_{\mathrm{KL}}(\sigma(\cdot | z, u) | | \tilde{\sigma})] < B \qquad \longrightarrow \text{Specification complexity}$ $\mathbb{E}_{z,u,\tau,\omega} \left[D_{\mathrm{KL}} \left(\varrho_{\tau,\omega}(\cdot | z, u) | | \tilde{\varrho} \right) \right] < C \quad \longrightarrow \text{Recognition complexity}$

Bounded rational control

Value iteration:

$$V(z) \leftarrow \mathbb{E}\left[v(s,u) + \gamma V(z') - \alpha \log \frac{\pi(u|z)}{\tilde{\pi}(z)} - \beta \log \frac{\sigma(\tau, \omega|z, u)}{\tilde{\sigma}(z, u)} - \eta \log \frac{\varrho_{\tau, \omega}(z'|z, u)}{\tilde{\varrho}(z')}\right]$$

Complexity terms

- $1/\alpha$ is a measure of flexibility
- $1/\beta$ is a measure of optimism
- $1/\eta$ is a measure of adaptivity

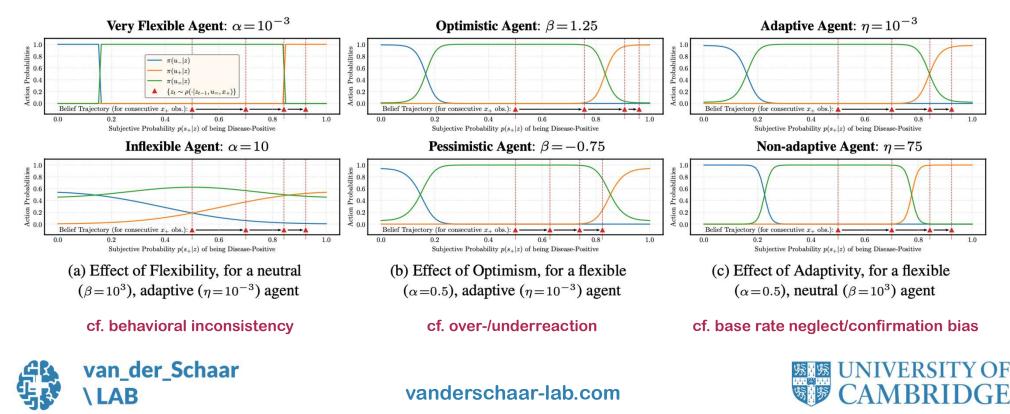
Flexibility, optimism, adaptivity

- Observations: negative (x₋), positive (x₊)
- Actions: monitor (*u*₌), negative diagnosis (*u*₋), positive diagnosis (*u*₊)
- Utility: 10 for correct diagnoses, -36 for incorrect diagnosis, -1 for monitoring

Flexibility, optimism, adaptivity

Actions: monitor $(u_{=})$, negative diagnosis (u_{-}) , positive diagnosis (u_{+})

Utility: 10 for correct diagnoses, -36 for incorrect diagnosis, -1 for monitoring

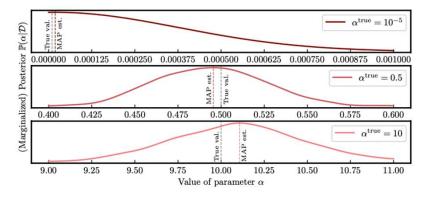


Inverse bounded rational control

How "rational" does ϕ_{demo} appears to be in pursuing (the "ideal") v?

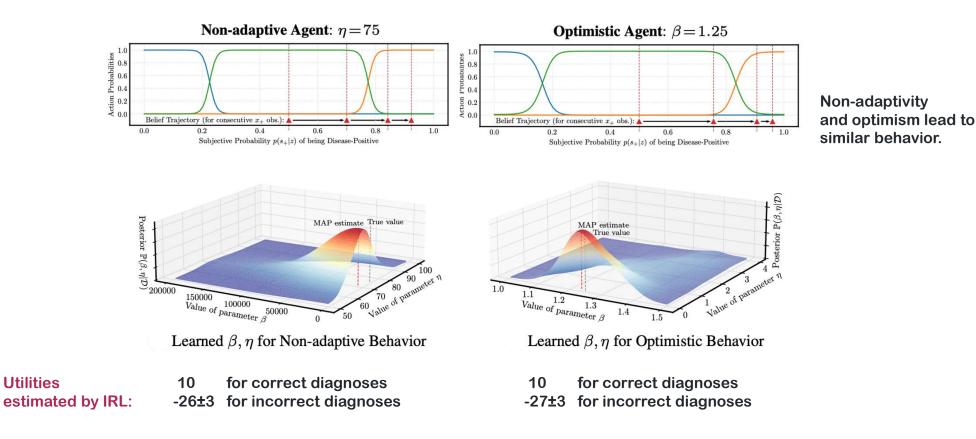
Inverse bounded rational control:

- *F* = the bounded rational planner
- $\theta_{\rm norm} = v$
- $\theta_{\rm desc} = \alpha, \beta, \eta$
- $\mathcal{G}(\phi_{\text{demo}}, \phi_{\text{imit}}) = \mathbb{E}_{x, u \sim \phi_{\text{demo}}} \left[\mathbb{P}_{\phi_{\text{imit}}}(u_{1:T} || x_{1:T}) \right]$



Learned α for various levels of flexibility

Differentiating non-adaptivity and optimism



Utilities

Illustrative use of IDM

IDM can be used as an investigative device for auditing and understanding human decision-making

Environment:

Diagnosing Alzheimer's disease When to order an MRI?

- MRIs are informative but costly
- $S = \{$ NL, MCI, Dementia $\}$ $A = \{$ MRI, No MRI $\}$
- Z =Cognitive test results × MRI outcomes

ADNI dataset

Pessimism when diagnosing Alzheimer's

Diagnosis of Alzheimer's:

When to order an MRI?

MRIs are informative but costly

$\beta = 3.86$ for all patients

Clinicians appear to be significantly less optimistic when diagnosing:

- patients with the ApoE4 genetic risk factor ($\beta = 601.74$)
- female patients
- patients aged >75

 $(\beta = 920.70)$ $(\beta = 2265.30)$

Our other work within the IDM framework

Method	Goal / motivating question	Planner	Normative params.	Descriptive params.
IAS (ICML'20)	How "timely" does the agent make decisions?	Timely active sensing	Deadline, cost of acquisition	Importance of accuracy, speed, efficiency
AVRIL (ICLR'21)	What reward function does the agent optimize?	RL planner	-	Reward function
CIRL (ICLR'21)	How important are various counterfactuals in making decisions?	Counterfactual RL planner	Counterfactuals	Importance weights
INTERPOLE (ICLR'21)	What are the subjective beliefs of the agent?	Policies based on decision boundaries	Interpretable state space	Decision dynamics & decision boundaries
IBRC (ICML'21)	How rational the agent behaves relative to an "ideal" reward function?	Bounded rational planner	"Ideal" reward function	Flexibility, optimism, adaptivity
ICB (submitted to NeurIPS'21)	How does behavior evolve over time?	Contextual bandit strategies	-	Time-varying beliefs over reward functions

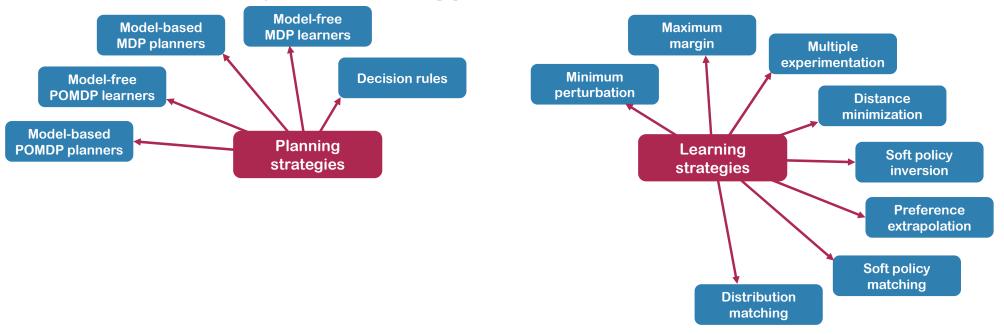
IDM defines a broad class of potential studies in behavior representation learning

	Replacing & Outperforming humans							
Previous works		Partially observable	Purposeful behavior	Subjective dynamics	Action stochasticity			
Behavioral cloning	\checkmark	\checkmark	Х	Х	\checkmark			
Subjective behavioral cloning		\checkmark	Х	\checkmark	\checkmark			
Deterministic distribution matching		Х	Х	Х	Х			
Stochastic distribution matching		Х	Х	Х	\checkmark			
Deterministic IRL		Х	\checkmark	Х	Х			
Stochastic IRL		Х	\checkmark	Х	\checkmark			
Subjective IRL	\checkmark	Х	\checkmark	\checkmark	\checkmark			
Risk sensitive IRL	\checkmark	Х	\checkmark	\checkmark	Х			
Deterministic partially-observable IRL	\checkmark	\checkmark	\checkmark	Х	Х			
Stochastic partially-observable IRL	\checkmark	\checkmark	\checkmark	Х	\checkmark			
Subjective partially-observable IRL	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
Maximum entropy IRL	\checkmark	Х	\checkmark	Х	\checkmark			
Subjective maximum entropy IRL	\checkmark	Х	\checkmark	\checkmark	\checkmark			

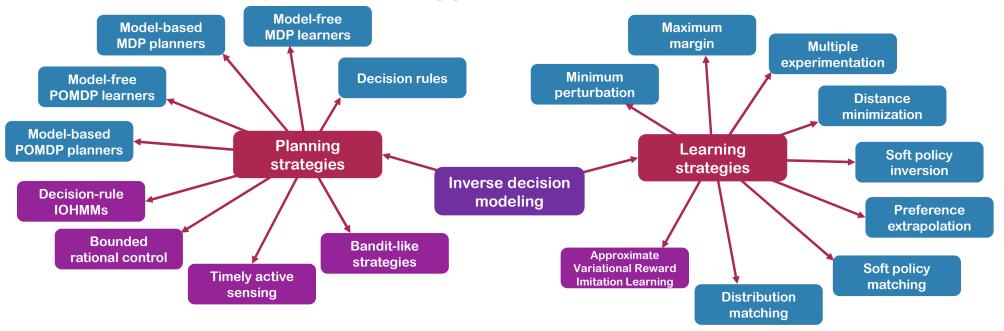
Understanding humans

Inverse decision model	Partially controllable	Partially observable	Purposeful behavior	Subjective dynamics	Action stochasticity	Knowledge uncertainty	Decision complexity	Specification complexity	Recognition complexity
Behavioral cloning	\checkmark	\checkmark	Х	Х	\checkmark	Х	Х	Х	Х
Subjective behavioral cloning	\checkmark	\checkmark	Х	\checkmark	\checkmark	Х	Х	Х	Х
Deterministic distribution matching	\checkmark	Х	Х	Х	Х	Х	Х	Х	Х
Stochastic distribution matching	\checkmark	Х	Х	Х	\checkmark	Х	Х	Х	Х
Deterministic IRL	\checkmark	Х	\checkmark	Х	Х	Х	Х	Х	Х
Stochastic IRL	\checkmark	Х	\checkmark	Х	\checkmark	Х	Х	Х	Х
Subjective IRL	\checkmark	Х	\checkmark	\checkmark	\checkmark	Х	Х	Х	Х
Risk sensitive IRL	\checkmark	Х	\checkmark	\checkmark	Х	\checkmark	Х	Х	Х
Deterministic partially-observable IRL	\checkmark	\checkmark	\checkmark	Х	Х	Х	Х	Х	Х
Stochastic partially-observable IRL	\checkmark	\checkmark	\checkmark	Х	\checkmark	Х	Х	Х	Х
Subjective partially-observable IRL	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Х	Х	Х	Х
Maximum entropy IRL	\checkmark	Х	\checkmark	Х	\checkmark	Х	\checkmark	Х	Х
Subjective maximum entropy IRL	\checkmark	Х	\checkmark	\checkmark	\checkmark	Х	\checkmark	Х	X
Inverse bounded rational control	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

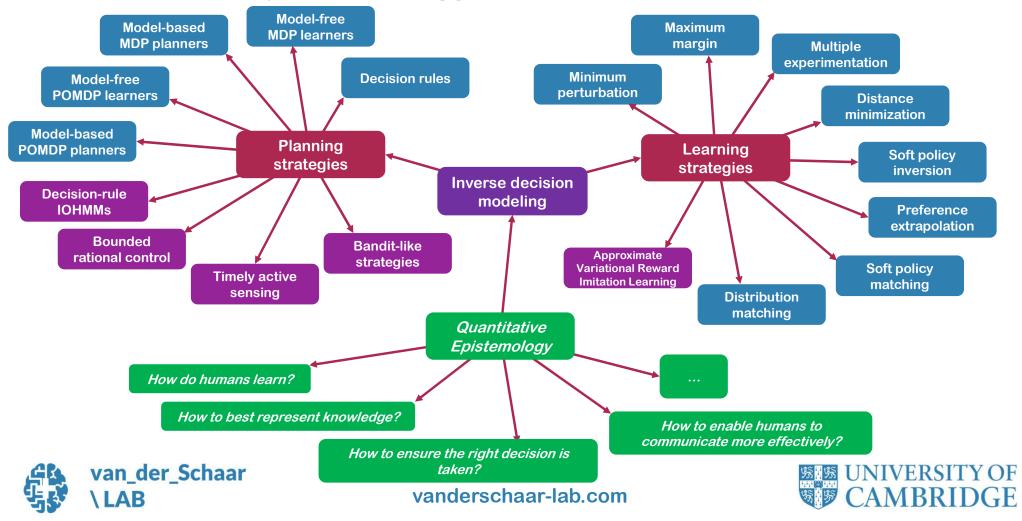
Quantitative Epistemology: New ML needed



Quantitative Epistemology: New ML needed



Quantitative Epistemology: New ML needed

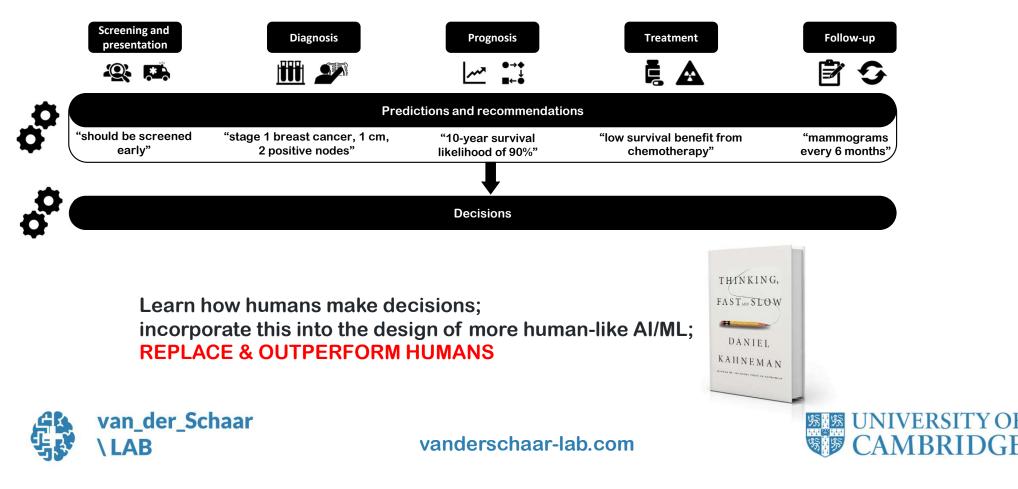


Quantitative epistemology

- A new human-machine partnership
- A new field of multi-disciplinary research
- Partnering with humans to empower them, not to replace them!

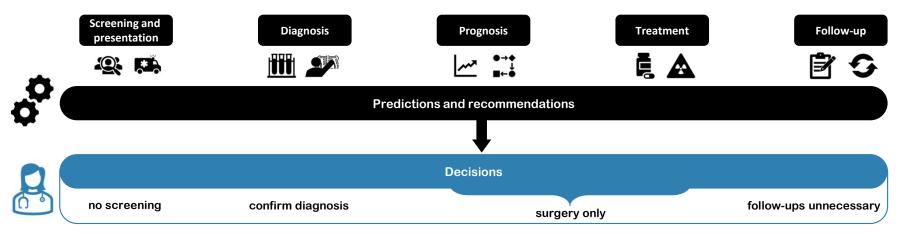
The Standard ML Agenda

A standard ML scenario: no human agency



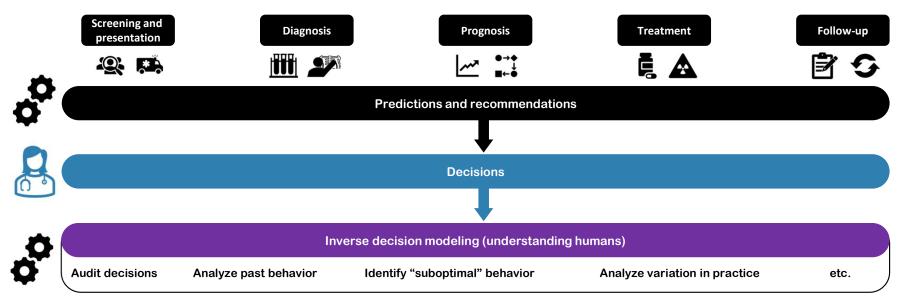
Standard Decision Support

AI/ML predictions and recommendations guiding human decision-making



Inverse decision modeling (vdS-Lab)

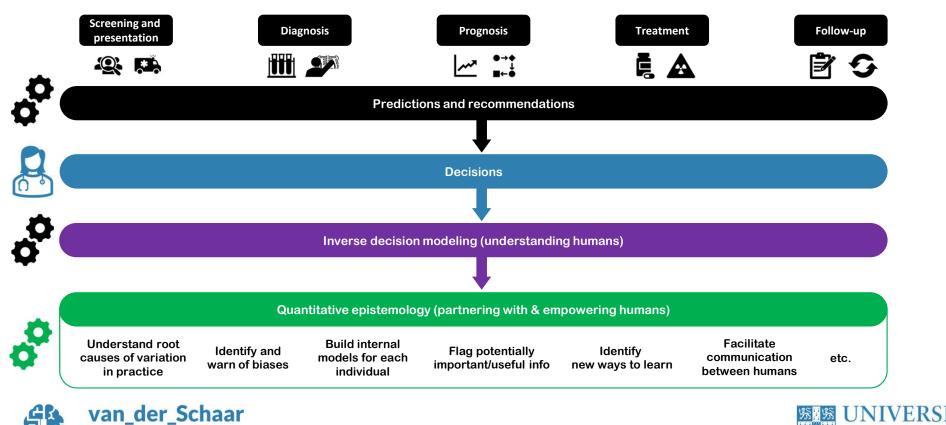
Surface-level analysis of/insight into human decision-making



Quantitative Epistemology (vdS-Lab)

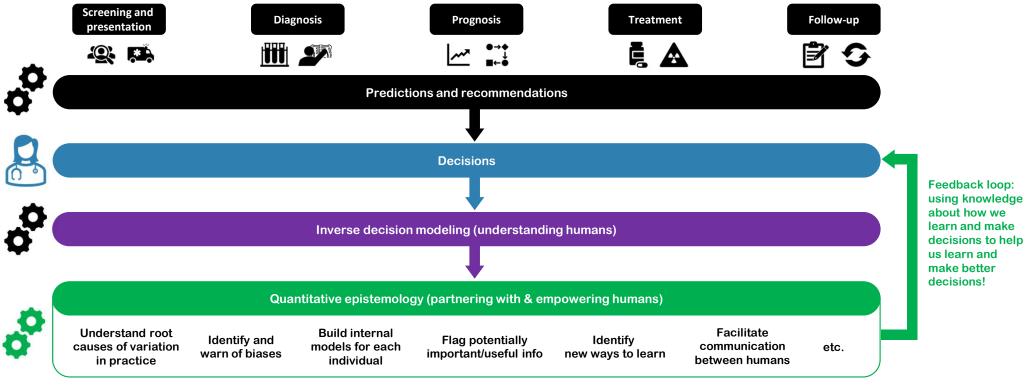
LAB

Extracting actionable meaning from analysis of decision-making...



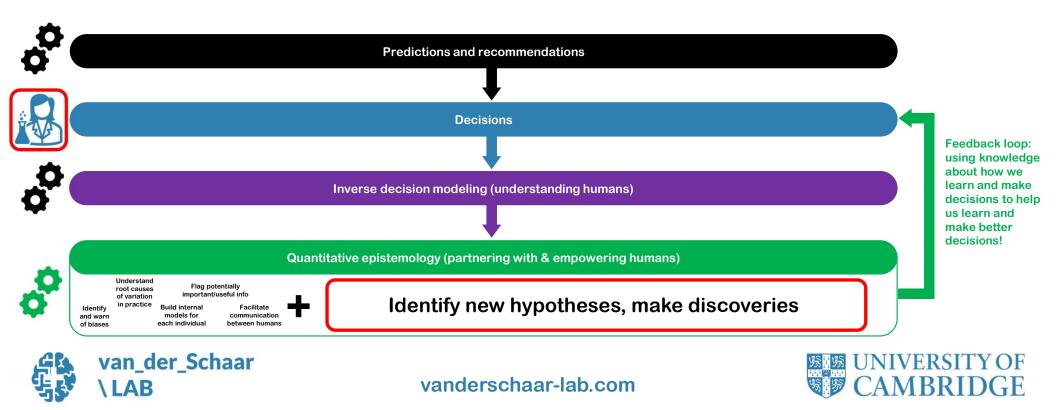
Quantitative Epistemology (vdS-Lab)

... creating an empowering loop that maximizes human agency and helps us make better decisions



Quantitative Epistemology (vdS-Lab)

For the researcher: new hypotheses and discoveries!



For more information & updates

vanderschaar-lab.com

- \rightarrow Research pillars
- \rightarrow Quantitative epistemology

