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Abstract. We present a novel framework for explainable labeling and
interpretation of medical images. Medical images require specialized pro-
fessionals for interpretation, and are explained (typically) via elaborate
textual reports. Different from prior methods that focus on medical re-
port generation from images or vice-versa, we novelly generate congruent
image–report pairs employing a cyclic-Generative Adversarial Network
(cycleGAN); thereby, the generated report will adequately explain a med-
ical image, while a report-generated image that effectively characterizes
the text visually should (sufficiently) resemble the original. The aim of
the work is to generate trustworthy and faithful explanations for the out-
puts of a model diagnosing chest x-ray images by pointing a human user
to similar cases in support of a diagnostic decision. Apart from enabling
transparent medical image labeling and interpretation, we achieve report
and image-based labeling comparable to prior methods, including state-
of-the-art performance in some cases as evidenced by experiments on the
Indiana Chest X-ray dataset.
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1 Introduction

Medical images present critical information for clinicians and epidemiologists to
diagnose and treat a variety of diseases. However, unlike natural images (scenes)
which can be easily analyzed and explained by laypersons, medical images are
hard to understand and interpret without specialized expertise. [1]

Artificial intelligence (AI) has made rapid advances in the last decade thanks
to deep learning. However, the need for accountability and transparency to ex-
plain decisions along with high performance, especially in healthcare, has spurred
the need for explainable machine learning. While natural images can be analyzed
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and explained by decomposing them into semantically-consistent and prototyp-
ical visual segments [18], multimodal approaches for prototypical explanations
are essential for interpreting and explaining medical imagery given the tight
connection between image and text in this domain.

1.1 Prior Work

Prior works on medical image interpretation and explainability have either at-
tempted to characterize (chest) x-rays in terms of multiple pathological la-
bels [19] or via automated generation of imaging reports [1,11,15]. The Chexnet
framework [19] employs a 121-layer convolution network to label chest x-rays. A
multi-task learning framework is employed to generate both tags and elaborate
reports via a hierarchical long short-term memory (LSTM) model in [1]. Improve-
ments over [1] are achieved by [11] and [15] by employing a topic model and
a memory driven transformer respectively. While the above report-generation
works achieve excellent performance, and effectively learn mappings between
the image and textual features, they nevertheless do not verify if the generated
report characterizes the input x-ray. It is this constrained characterization in our
suggested work that helps us generate prototypical chest x-ray images serving
as explanations. In more recent work saliency maps have been used to select
informative xray images [16]

1.2 Our Approach

This work differently focuses on the generation of coherent image–report pairs,
and posits that if the image and report are conjoined counterparts, one should
inherently describe the characteristics of the other. It is the second part of the
radiology report generation model i.e. generation of prototypical images from
generated reports that serve as explanations for the generated reports. The ex-
plainable model proposed can be characterised as a model having post hoc ex-
planations where an explainer outputs the explanations corresponding to the
output of the model being explained. The approach to explanations in such an
explanation technique as ours is different from methods which propose simpler
models such as decision trees that are inherently explainable. Having proto-
typical images as explanations has been used in case of natural images in [18]
(discussed earlier) and [26]. None of the approaches explores the paradigm of
prototypical image generation as explanations in case of medical images which
has been proposed in this work novelly with a multimodal approach.

1.3 Contributions

Overall, we make the following research contributions:

1. We present the first multimodal formulation that enforces the generation of
coherent and explanatory image–report pairs via the cycle-consistency loss
employed in cycleGANs [14].
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2. Different from prior works, we regenerate an x-ray image from the report, and
use this image to quantitatively and qualitatively evaluate the report quality.
Extensive labeling experiments on textual reports and images generated via
the Indiana Chest X-ray dataset [20] reveal the effectiveness of our multi
modal explanations approach.

3. We evaluate the proposed model on two grounds namely: the quality of
generated reports and the quality of generated explanations. Our method
achieves results comparable to prior methods in report generation task, while
achieving state-of-the-art performance in certain conditions. The evaluations
done for post-hoc explanations show the employability of cycle consistency
constraints and multimodal analysis as an explanation technique.

4. As qualitative evaluation, we present Grad CAM [4]-based attention maps
conveying where a classification model focuses to make a prediction.

2 Method

2.1 Coherent Image-Report Pairs With CycleGANs

We aim to model the tight coherence between image and textual features in
the chest x-ray images and reports through our multi-modal report generation
model. Reports generated should be such that an x-ray image generated with
just these generated reports as the input should be similar to ground truth x-ray
images; and prototypical x-ray images generated as explanations should be such
that a report generated from these images as inputs resembles original report.
We hence devise a multimodal, paired GAN architecture explicitly modeling the
cycle consistent constraints based on CycleGAN [14] with data of type {image,
text/labels}.

2.2 CycleGAN

Given two sets of images corresponding to domains X and Y (for example, two
sets of paintings corresponding to different styles), cycleGAN enables learning
a mapping G : X → Y such that the generated image G(x) = y′, where x ∈ X
and y ∈ Y , looks similar to y.

The generated images y′ are also mapped back to images x′ in domain X.
Hence, cycleGAN also learns another mapping F : Y → X where F (y′) = x′ such
that x′ is similar to x. The structural cycle-consistency assumption is modeled
via the cycle consistency loss, which enforces F (G(x)) to be similar to x, and
conversely, G(F (y)) to be similar to y. Hence the objective loss to be minimized
enforces the following four constraints:

G(x) ≈ y, F (y) ≈ x and F (G(x)) ≈ x,G(F (x)) ≈ y (1)
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Fig. 1. a) Representation of our multimodal cycleGAN framework with exemplar in-
puts and generated outputs for the image and text modalities. b) Application of the
cyclic GAN [14] framework to generate coherent image–report pairs.

We exploit the setting of Cycle-GAN in a multimodal paradigm i.e. the do-
mains in which we work are text (reports) and image (chest x-ray). As shown
in Figure 1, our multimodal cyclic GAN architecture comprises (i) two GANs
F and G to respectively generate images from textual descriptions and vice-
versa, and (ii) two deep neural networks, termed Discriminators DX and DY ,
to respectively compare the generated images and reports against the originals.
Figure 1(a) depicts the mappings G and F , while Figure 1(b) depicts how cycle-
consistency is enforced to generate coherent image-report pairs.

2.3 Explanatory image–report pairs

Our model learns mappings between prototypical image–text decompositions
(termed visual or textual words in information retrieval) akin to the this looks
like that formulation [18] and synthetic image based explanations in [26]. Since
our setting is multimodal instead of image to image setting in cycle-gans, GAN G
(report-to-image generator) in our setting is based on a CNN-plus-LSTM based
generative model similar to the architecture proposed in [1]. GAN F (image-to-
report generation) uses a hierarchical structure composed of two GANs similar
to [10]. First, GAN F1 takes the text embedding as input and generates a low-
resolution (64× 64) image. The second GAN F2 utilizes this image and the text
embedding to generate a high-resolution (256× 256) image.

2.4 Dataset

We used the Indiana University Chest X-Ray Collection (IU X-Ray) [20] for our
experiments, as it contains free text reports essential for the report generation
task. IU X-Ray is a set of chest x-ray images paired with their corresponding
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Table 1. Natural Language Metrics for Generated Reports

Methods: Ours-Cycle∗ Ours-no-cycle R2Gen [15]
Multiview
[25]

BLEU-1 0.486 0.520 0.470 0.529
BLEU-2 0.360 0.388 0.304 0.372
BLEU-3 0.285 0.302 0.219 0.315
BLEU-4 0.222 0.251 0.165 0.255
ROUGE 0.440 0.463 0.371 0.453

∗ Reduction in training data (only frontal image-report pairs used)

diagnostic reports. The dataset contains 7,470 images, some of which map to the
same free text report. 51% of the images are frontal, while the other 49% are
lateral.

The frontal and lateral images map to individual text reports, at times cor-
responding to the same report. Consequently, mapping reports to images may
confound the generator F regarding which type of image to generate. To avoid
this confusion, we work only with frontal images, thus reducing the dataset to
3793 image-text pairs. Each report consists of the following sections: impression,
findings, tags, comparison, and indication. In this work, we treat the contents
of impression and findings as the target captions to be generated. We adopt a
80:20 train-test split for all experiments.

2.5 Implementation

All images were resized to 244× 224 size. We used 512× 512 images for initial
experiments involving the ’Ours-no-cycle’ method (see Table 1) and observed
a better performance with respect to natural language metrics. However, low-
resolution x-rays were used for subsequent experiments due to computational
constraints. The input and hidden state dimensions for Sentence-LSTM are 1024
and 512 respectively, while both are of 512 length in the case of Word-LSTM.
Learning rate used for the visual encoder is 1e-5, while 5e-4 is used for LSTM
parts. Embedding dimension used for input to the text-to-image framework is
256, with learning rate set to 2e-4 for both the discriminator and the generator.
We used PyTorch [5]-based implementations for all experiments.

Firstly, we individually trained the image-to-text and text-to-image genera-
tor modules. In the text-to-image part, we first trained the Stage 1 generator,
followed by Stage 2 training on freezing the Stage 1 generator. Note that this
individual training of the text-to-image module was done on original reports
from the training set. However, when we trained the cycleGAN architecture, the
text-to-image part took in the generated text as input. While directly training
both the modules together, oscillations in loss values were observed.
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3 Evaluation

3.1 Evaluation of Generated Reports

We first evaluate the quality of the generated reports via the BLEU and ROUGE
metrics [23,24]; we compare our performance against other methods [15,25] in
Table 1. Our methods with and without cycle-consistency loss are referred to as
Ours-cycle and Ours-no-cycle. Since only frontal images were used for training
Ours-cycle (see Section 2.5), the training set is reduced to 3793 image–report
pairs. We get comparable performance with the multi-view network [25] based
on NLG metrics. There is a small drop in these metrics with the addition of the
cycle component, mainly due to the reduction in training data (as the number
of image-report repairs is approximately halved).

3.2 Evaluation of Explanations

To evaluate the explanations, we first assess if the generated images truly re-
semble real input images because the quality of the generated images is also a
representative of the quality of the model generated reports as discussed in ear-
lier sections. Secondly, we consider the aspects of trust and faithfulness of our
explanation technique based on ideas in [27] for post-hoc explanations.

3.2.1 Evaluating Similarity of Generated Images and Real X-ray Im-
ages We quantitatively assess the images using CheXNet [19] (state-of-the-
art performance on multi-label classification for chest x-ray images). We use
CheXNet on 〈input image–generated image〉 pairs for checking the amount of
disparity present between the true and generated images. We achieve a KL-
Divergence of 0.101. We also introduce a ’top-k’ metric to identify if the same
set of diseases are identified from the input and generated images. The metric
averages the number of top predicted diseases which are common to both input
and the generated images.

top− k =
∑

All pairs|(top−k labels(input image))∩(top−k labels(generated image))|
Number of pairs

We compare the output labels of CheXNet on both real and generated image us-
ing the top-k, Precision@k and Recall@k metrics. From Table 2, on average 1.84
predicted disease labels are common between the input and generated images,
considering only the top-two ranked disease labels. In Table 2, we have also shown
a comparison against images generated from our text-to-image (report-to-x-ray-
image) model on the reports generated by the recently proposed transformer-
based R2gen algorithm [15]. Our representative generated images perform better
on the top-x, precision and recall metrics, quantitatively showing that the re-
ports generated by our cycleGAN model better describe the input chest x-ray
image.
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Table 2. Metrics for generated images by using CheXNet for multi-label classification.

k Top-k (Ours)
Top-k
(R2Gen)
[15]

Precision@k
(Ours)

Precision@k
(R2Gen) [15]

Recall@k
(Ours)

Recall@k
(R2Gen) [15]

2 1.84 0.64 0.92 0.32 0.13 0.05
5 3.01 2.55 0.60 0.51 0.21 0.18
8 6.45 5.82 0.81 0.73 0.46 0.42

Table 3. Accuracy Metric for the Reports Generated from Prototypical (Generated)
Images

Label
No
Find-
ing

Cardi
omed
iast
inum

Cardi
omeg
aly

Lung
Le-
sion

Lung
Opac
ity

Edema
Cons
olida
tion

Pneu
mon
ia

Atele
ctasis

Pneu
moth
orax

Pleur
al(E)

Pleur
al(O)

Fract
ure

Supp
ort
Devic
es

Accuracy 0.78 0.92 0.84 0.96 0.82 0.97 0.96 0.97 0.94 0.98 0.95 0.99 0.96 0.94

3.2.2 Evaluating Trustability of the Explanations We build upon the idea
of trust in an explanation technique suggested in [27] for post-hoc explanations.
An explanation method can be considered trustworthy if the generated expla-
nations are able to characterize the kind of inputs on which the model performs
well or closer to the ground truth. We evaluate our explanations on this aspect
of trustability by testing if the explanations or prototypical x-ray images gener-
ated are the images on which reports generated are very close to ground truth
reports. We evaluate the similarity of the two reports (ground truth reports and
reports generated from prototypical images) by comparing the labels output by
a naive Bayes classifier on the input reports. The results for accuracy metric for
each of the 14 labels is summarised in the Table 3. We can clearly infer that
the x-ray images generated as explanations have been able to understand the
model’s behaviour and hence the good accuracy (around 0.9 for most of the
labels).

3.2.3 Evaluating Faithfulness of Explanations Another aspect which has
been explored in some of the explanation works is faithfulness of the technique
i.e. whether the explanation technique is reliable. Reliability is understood in
the sense that it is reflecting the underlying associations of the model rather
than any other correlation such as just testing the presence of edges in object
detection tasks [12]. We test the faithfulness of the explanations generated by
randomising the weights of the report generation model and then evaluating the
quality of prototypical images to check if the explanation technique can be called
faithful to the model parameters. The metric values for Top-2, Precision@2 and
Recall@2 for generated images in this case are 0.90, 0.45 and 0.06 respectively
significantly less than corresponding metrics in Table 2. As evident, the proto-
typical images generated as explanations from randomised weights model are
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unable to characterize the original input images because the model they are ex-
plaining doesn’t contain the underlying information it had previously learnt for
characterizing given chest x-ray images.

3.2.4 Qualitative Assessment of Generated Images using Grad-CAM
We used GradCAM [4] for highlighting the salient image regions focused upon by
the CheXNet [19] model for label prediction from the real and generated image
pairs. Two examples are shown in Fig. 2. In the left sample pair, real image
shows fibrosis as the most probable disease label, as does the generated image. As
observable, the highlighted region showing the presence of a nodule is the same
in both x-ray images except for the flip from the left and right lung. This shows
that the report generation model was able to capture these abnormalities with
great detail, as the report-generated image also captures these details visually.
Similarly, two of the top-three labels are the same in both real and generated
images as predicted by CheXNet in sample pair 2.

Fig. 2. Grad CAM saliency maps for top 3 predicted labels by CheXNet for real (top
row) and generated (bottom row) image pairs; Sample pair 1 (left) and Sample pair 2
(right)

4 Conclusion

A cycleGAN-based framework for explainable medical report generation and
synthesis of coherent image-report pairs is proposed in this work. Our gener-
ated images visually characterize the text reports, and resemble the input image
with respect to pathological characteristics. We have performed extensive exper-
iments and evaluation on the generated images and reports, which show that our
report-generation quality is comparable to the state-of-the-art in terms of nat-
ural language generation metrics; also the generated images depict the disease
attributes both via attention maps and other quantitative measures (precision
analysis, trust, and faithfulness) showing the usefulness of a cycle-constrained
characterization of chest x-ray images in an explainable medical image analysis
task.
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