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Abstract. Explaining the decisions of deep learning models is critical
for their adoption in medical practice. In this work, we propose to unify
existing adversarial explanation methods and path-based feature impor-
tance attribution approaches. We consider a path between the input
image and a generated adversary and associate a weight depending on
the model output variations along this path. We validate our attribution
methods on two medical classification tasks. We demonstrate significant
improvement compared to state-of-the-art methods in both feature im-
portance attribution and localization performance.
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1 Introduction

While deep learning models are nowadays commonly used in the medical domain
[1,8,14], a major limitation to their general adoption in daily clinical routines is
the lack of explanations with respect to their predictions [16]. In this work, we
focus on visual explanation methods [9,21,30]. They provide an additional image
where regions of higher importance -for the model prediction- are expected to
correlate with pathology location when the model prediction is correct or fail
to otherwise. Thus, visual explanation images help clinicians to assign a level of
confidence to a model.

Several contributions have been made [4,7,20,23,28] based on the generation
of adversaries (images closely related to input images but that have a different
model prediction), where visual explanation is defined as the difference between
this adversary and the input image, or its regularized version [4,23]. They per-
form particularly well in highlighting global relevant regions for classification
models that match expert expectations e.g. localized pathology. Despite efforts to
produce visual explanations only containing relevant information to the model,
residual noise still remains. On the other hand, path-based methods [17], which
derive visual explanation from pixel-wise derivatives of the model, are built to
detect pixel regions with high impact on the model prediction. They generally
result in very noisy outputs. The main contribution of this paper is to unify both
adversarial and path-based feature attribution methods (section 3). In the spirit
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of [26], we go a step further and follow a path between the input image and its
adversary. We associate to each element of this path a weight reflecting feature
importance through the model gradient. Visual explanation is then defined as
the sum of all contributions along the path. We validated our method (section 4)
on two classification tasks and publicly available data sets: slice classification for
brain tumors localization in MRI, and pneumonia detection on chest X-Rays.

2 Related Works

Within the numerous contributions in visual explanation for classification mod-
els [5,9,10,19,21], our work is at the crossroads of two major families, gradient
attribution methods and adversarial methods. In the following, let f be the clas-
sifier to explain, x the input image to which the classifier f is applied and E the
visual explanation image.

Gradient attribution methods [21,24,25,26,29] generate visual explanations
by associating an importance value with each pixel of x using back propagation

of the classifier’s gradient: ∂f
∂x (x) =

{
∂f
∂xi

(x)
}
i

where index i enumerates all

pixels of x. In particular, [26] introduced the idea of integrating this gradient

along a path of images to define the explanation as E = (x−z)
∫ 1

0
∂f(z+λ(x−z))

∂x dλ
(where z is the null image or random noise). These methods generally produce
visual explanations that contain relevant regions but are often corrupted by noise
and have limited quality (see table 1).

In a different perspective, adversarial methods [3,4,7,23,28] propose to gen-
erate visual explanation by comparing the input image with a ”close” generated
adversarial example xa and defining visual explanation by

E(x) = |x− xa|. (1)

The prediction of classifier f for the adversary xa is expected to be different
from that of the original image (e.g f(xa) = 1− f(x) for a binary classifier) and
only differ from the input image on regions that are critical for the decision of
f . Moreover, [3,23] advocate that xa should belong to the distribution of real
images (for instance by leveraging domain translation techniques [31]) in order
to explain the behavior of f within the distribution of images it is expected
to work on. Several works [4,18,23] also use the notion of a ”stable” image xs

defined as the closest element to x (in the sense of norm L1,2) generated by a
comparable generation process as for xa but classified by f like x (f(x) = f(xs)).
The goal is to reduce reconstruction errors due to the generation process which
are irrelevant to the visual explanation, then defined as E = |xs − xa|. These
methods have high performances in localizing pathological regions when acting
on a classifier f trained to detect if there is any pathology (table 1).

3 Method

Compared to gradient attribution methods, adversarial approaches generate out-
puts that are smoother and more localized (table 1). However, no adversarial
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approach explicitly enforces that visual explanation values translate into im-
portance values for f at the pixel level or at any higher scale. For instance,
suppose x is a CT-scan and classifier f is influenced by regions containing bone
tissues (which have high intensity in CT-scans). These regions should then be
attenuated in the adversary xa and appear with high intensity in the difference
E = |x − xa|. This high intensity may not be directly related to the relative
importance of bone regions for f but only result from their original intensity in
x. This case would poorly perform using the AOPC metric introduced in [17].
Experimentally, even when using xs, it is sometimes impossible to remove all
irrelevant regions for f .

3.1 Combining gradient attribution and adversarial methods

Consider an image x or its ”stable” generation xs (depending on the chosen ad-
versarial method) and its generated adversary xa. Following [23,26] we consider
a differential path γ mapping elements λ ∈ [0, 1] to the space of real images
([4,23]) and satisfying γ(0) = x and γ(1) = xa. From equation (1) we have

E(x) = |xa − x| =
∣∣∣∣∫ 1

0

dγ

dλ
(u)du

∣∣∣∣ . (2)

To enforce a monotonic relationship between high value regions of E and high
importance regions of f , we propose to introduce weights related to the variations
of f along the path integral (2). We define these weights (w) at every u ∈ [0, 1]

based on the variations
d(f ◦ γ)

dλ
(u) =

∂f

∂x
(γ(u))

dγ

dλ
(u). Several strategies are

possible for w. The expressions studied in section 3.2 can be summarized using

a continuous function of two variables F , setting w(u) = F
(
∂f
∂x (γ(u)), dγdλ (u)

)
.

We then define the visual explanation map as

Ew(x) =

∣∣∣∣∫ 1

0

w(u)
dγ

dλ
(u)du

∣∣∣∣ =

∣∣∣∣∫ 1

0

F

(
∂f

∂x
(γ(u)),

dγ

dλ
(u)

)
dγ

dλ
(u)du

∣∣∣∣ (3)

Weights w, as well as path γ and its derivative, are of the same dimension as
image x, summation and multiplication are thus done pixel-wise.

3.2 Choice of the path and regularization

Ideally path γ should be traced on the manifold of real clinical images (as in [23]).
In practice, this constraint induces heavy computation burdens to determine the
derivative dγ

dλ
3. To tackle this issue we use a similar expression as [26] and define

3 As in [3,23], consider an encoder(E)-generator(G) architecture. E (resp. G) maps
from (resp. to) the space of real images (⊂ Rn) to (resp. from) an encoding space (⊂
Rk). The real images path γ can for instance be defined as γ : λ→ G(zx+λ(zxa−zx)),
where zx = E(x) and zxa = E(xa). It follows that dγ

dλ
= ∂G

∂z
(zx +λ(zxa − zx))(zxa −

zx). But ∂G
∂z

is a vector of dimension n.k which easily reaches a magnitude of 109

that is to be computed at several values of λ.
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γ(λ) = x + λ(xa − x) so that dγ
dλ = (xa − x). Experimentally, even with this

simplification, visual explanation maps integrating feature importance (FI)

Ev1FI(x) = (xa − x)2
∣∣∣∣∫ 1

0

∂f

∂x
(γ(u))du

∣∣∣∣
Ev2FI(x) = (xa − x)2

∫ 1

0

∣∣∣∣∂f∂x
(γ(u))

∣∣∣∣ du
(4)

outperform state-of-the-art methods (section 4). Ev1FI is obtained by setting F :
(x, y)→ x.y and is used as baseline. To take into account all derivatives regard-
less of their signs we set F : (x, y) → |x|.y and obtain Ev2FI . Finally, despite the
accumulation of gradients along the linear path between x and xa, Ev1FI and Ev2FI
tend to be noisy. We thus introduce a regularized version

Ev2FI,kσ (x) =

∫ 1

0

(
(xa − x)2

∣∣∣∣∂f∂x
(γ(u))

∣∣∣∣) ∗ kσdu (5)

where kσ is a centered Gaussian kernel of variance σ. In our experiments Ev2FI,kσ
is competitive with Ev1FI and Ev2FI for both the AOPC metric and the feature rele-
vance score on feature importance evaluation [13,17] while improving pathology
localization performance.

4 Experiments and Results

4.1 Datasets and Models

Slice classification for brain tumor detection- We use the dataset of Mag-
netic Resonance Imaging (MRI) for brain tumor segmentation from the Medical
Segmentation Decathlon Challenge [22]. Only using the contrasted T1-weighted
(T1gd) sequence, we transform the 4-level annotations into binary masks. We
then resize the 3D volumes and corresponding binary masks from 155x240x240
to 145x224x224. From these resized masks we affect a class label to each single
slice of the volume along the axial axis. Class 1 is given to a slice if at least 10
pixels (0.02 %) are tumorous. Then, the objective is to train a classifier to detect
slices with tumors. As additional prepossessing, we remove all slices outside the
body along the axial axis and normalize all slice images in [0, 1]. 46900 slices are
used for training, 6184 for validation and 9424 for test with 25% of slices with
tumors (in each set).
Pneumonia detection- We also use a chest X-Ray dataset from the avail-
able RSNA Pneumonia Detection Challenge which consists of X-Ray dicom ex-
ams extracted from the NIH CXR14 dataset [27]. We constitute our binary
database with 8851 healthy and 6012 pathological exams.As in [4], we only keep
the healthy and pathological exams constituting a binary database of 14863 sam-
ples (8851 healthy / 6012 pathological). Images are rescaled from 1024 x 1024 to
224 x 224 and normalized to [0, 1]. Bounding box annotations around opacities
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are provided for pathological cases. The split consists in 11917 exams in train,
1495 in validation and 1451 in test.
Classifier- For the two problems, we train an adapted ResNet50 [11] using
the Adam optimizer [12] with an initial learning rate of 1e-4, and minimizing
a weighted binary cross-entropy. We recover the ResNet50 backbone trained on
ImageNet [6], and add a dropout layer (rate=0.3), then two fully connected
layers with respectively 128 and 1 filters. We also introduce random geometric
transformations such as flip, rotation, zoom or translation during the training.
The classifiers respectively achieve 0.975 and 0.974 AUC scores on brain tumor
and pneumonia detection problems.

4.2 Attribution techniques and implementation details

Baseline methods- We compare our method to several baselines and state-
of-the-art visual explanation approaches:
(1) Gradient-based (or CAM-based): Gradient [21], Integrated Gradient [26]
(IG), GradCAM [19] (GCAM).
(2) Perturbation-based: Mask Perturbation [9] (MPert), Mask Generator [5]
(MGen), Similar and Adversarial Generations [4] (SAGen).
(3) Adversary based: the two variations proposed in [3]: CyCE and SyCE. In
CyCE, the explanation is computed with the input image |x − xa|, while the
stable image is used in SyCE version (|xs − xa|).

For MPert [9], we look for a mask of size 56 x 56, and filter it after upsam-
pling (σ = 3). We use gaussian blur (σ = 5) to perturbate the input through the
mask. Masks are regularized with total variation and finally obtained after 150
iterations. We use a ResNet-50 backbone pre-trained on the task as the encoder
part of MGen, then we basically follow the UNet-like [15] architecture and train-
ing proposed in [5]. MGen produces mask of size 112x112 that are upsampled
to 224x224. For SAGen [4], we use a UNet-like architecture as the common part
of the generators and two separated final convolutional blocks for respectively
stable and adversarial generations.

Our methods- For the different variations Ev1FI , Ev2FI and Ev2FI,kσ , the integral

is approximated using a Riemann sum. For instance, in SyCE, Ev2FI is computed
through:

Ev2FI(x) ≈ (xs − xa)2

M

M∑
m=1

∣∣∣∣∂f∂x
(γm)

∣∣∣∣ (6)

where γm = xs + m−1/2
M (xa−xs), and M is the number of steps in the Riemann

sum. In our experiments, we take M = 50. For the regularized version, we apply
a Gaussian filtering of kernel 28x28 and σ=2.

4.3 Results

Pathology localization For strong classifiers f , as it is the case here (see sec.
4.1), we expect the feature attributions to match experts annotations as much
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(a) Pneumonia - X-Rays

(b) Brain tumor - MRI

Fig. 1: Attribution maps visualization. For (a) and (b), left columns show the
input image with red contours indicating pathology localization. Other columns
show visualization explanations generated by our regularized method Ev2FI,kσ and
two adversarial approaches of [3].

as possible. We measure the intersection over union (IoU)), and the propor-
tion of attribution maps that lays outside the ground truth annotations, also
called False Negative Rate (FNR). Both metrics are computed between ground
truth annotations and thresholded binary explanation maps. As in [3], the at-
tribution maps are thresholded given percentile values. We only display IoU
and FNR scores for percentile values that mostly represent the size distribution
of ground truth annotations. Table 1 reports the localization scores. First, ad-
versarial generation methods CyCE and especially SyCE outperform common
state-of-the-art approaches. For both SyCE and CyCE, our proposed methods
Ev1FI , Ev2FI and Ev2FI,kσ significantly improve localization performances compared to

the baseline E (shown in blue or red in table 1), or are at least competitive (Ev1FI
for SyCE). In the two adversarial generation approaches, Ev2FI outperforms Ev1FI ,
but the regularized version Ev2FI,kσ is the best localizer (red). Figure 1a and 1b
display qualitative results comparing visual explanation from baseline methods
CyCE and SyCE with our regularized approach Ev2FI,kσ . It visually supports the
localization results shown in table 1. Our method focuses only on important re-
gion for the classifier which also correlate with human annotations, and remove
residual errors remaining in baseline attribution maps (especially for CyCE).

Feature relevance evaluation Although localization performance enables
human experts to assess the quality of the visual explanation, it is not enough
to translate the importance of features for the classifier. High localization per-
formance does not reflect the capacity of the visual explanation to order regions
of the input image w.r.t their importance for the model decision. It only re-
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Table 1: Localization results. Different attribution methods on Pneumonia
detection and Brain tumor problems. IoU (higher is better) and FNR (lower is
better) scores are given at representative percentile values for each problem.

Metric Perc. Grad. IG GCAM MPert MGen SAGen
CyCE SyCE

E Ev1FI Ev2FI Ev2FI,kσ E Ev1FI Ev2FI Ev2FI,kσ

Pneumonia

IoU ↑
90 0.187 0.170 0.195 0.204 0.208 0.232 0.221 0.269 0.300 0.321 0.299 0.289 0.323 0.335
95 0.152 0.136 0.138 0.154 0.169 0.173 0.191 0.232 0.259 0.278 0.244 0.242 0.271 0.285
98 0.097 0.086 0.070 0.087 0.103 0.097 0.116 0.149 0.163 0.175 0.151 0.150 0.165 0.177

FNR ↓
90 0.639 0.698 0.645 0.623 0.620 0.584 0.596 0.532 0.494 0.471 0.492 0.507 0.469 0.457
95 0.584 0.653 0.618 0.576 0.542 0.535 0.494 0.421 0.379 0.352 0.399 0.407 0.363 0.344
98 0.508 0.603 0.593 0.537 0.461 0.495 0.430 0.321 0.285 0.257 0.319 0.314 0.275 0.250

Brain Tumor
IoU ↑ 98 0.154 0.238 0.173 0.290 0.318 0.330 0.322 0.337 0.376 0.428 0.411 0.404 0.426 0.432

99 0.131 0.196 0.115 0.263 0.274 0.284 0.270 0.288 0.322 0.363 0.348 0.338 0.357 0.364

FNR ↓ 98 0.744 0.621 0.715 0.580 0.534 0.525 0.542 0.518 0.481 0.433 0.462 0.462 0.446 0.441
99 0.687 0.536 0.701 0.451 0.413 0.408 0.440 0.401 0.358 0.311 0.344 0.347 0.329 0.324

(a) Brain tumor - MRI

(b) Pneumonia - X-Rays

Fig. 2: AOPC scores relative to random baseline. The first two columns:
baseline adversarial approaches CyCE E (left) and SyCE E (middle) compared
with our proposed methods. Last column: comparision of baseline E and regu-
larized version Ev2FI,kσ with other state-of-the-art methods. Results are given for
the two classification problems. The higher area, the better.

ports on its capacity to find these regions. To evaluate feature importance for
the classifier, we use two metrics based on input degradation techniques [17]:
(i) the area over the perturbation curve (AOPC) by progressively perturbing
the input, starting with the most relevant regions of the explanation map first
(introduced in [17]); and (ii) the feature relevance score (R) proposed in [13]
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which combines degradation (most relevant first) and preservation (least relevant
first) impacts w.r.t. the classifier. For both a perturbation method must be set.
In our experiments, we use an adversarial perturbation (as in [2]). Other types
of perturbations (replacement by zero, replacement by noise) generate images
outside of the training distribution and break down all visual explanation meth-
ods, rendering their evaluation impossible. The adversarial perturbation process
for these metrics is independent from adversary generations in adversarial-based
visual explanations to produce fair evaluation comparisons. It basically follows
the image-to-image translation approach proposed in [20]. The two metrics are
computed on a balanced subset of 1000 images of the test set.

Table 2 shows the feature relevance score R for specific (”0” or ”1”) and
combined (”All”) predicted classes. Then, figures 2a and 2b show the evolution
of the AOPC score on the two classification problems for the different visual
explanation approaches relative to a random baseline. (i) Our proposed methods
improve adversarial generation baselines CyCE and SyCE for both relevance
score on the two predicted classes (blue and red in table 2), and the AOPC
metric (red, green and yellow curves compared to the blue one on the first two
columns of figures 2a and 2b). (ii) The regularized version Ev2FI,kσ (red curve)

is competitive with Ev1FI and Ev2FI (or even outperformed them on Brain tumor
problem). (iii) Our methods outperform state-of-the-art approaches (last column
in the AOPC figures), especially the ones based on SyCE adversarial generation
(see table 2).

Table 2: Feature Relevance Score R. Comparing the different attributions
methods on Pneumonia detection and Brain tumor problems. The score R is
given for specific predicted class 0 and 1 as well as for the two combined (All).

Pred.
Random Grad. IG GCAM MPert MGen SAGen

CyCE SyCE
Class E Ev1FI Ev2FI Ev2FI,kσ E Ev1FI Ev2FI Ev2FI,kσ

Pneumonia
All 0.118 0.483 0.385 0.473 0.475 0.339 0.463 0.636 0.672 0.686 0.686 0.593 0.657 0.679 0.712
0 0.172 0.597 0.562 0.563 0.582 0.304 0.504 0.771 0.830 0.839 0.810 0.758 0.823 0.844 0.835
1 0.049 0.037 0.009 0.363 0.255 0.368 0.084 0.357 0.359 0.376 0.462 0.298 0.342 0.358 0.506

Brain Tumor
All 0.066 0.563 0.599 0.714 0.631 0.689 0.736 0.638 0.675 0.693 0.703 0.754 0.766 0.778 0.788
0 0.077 0.509 0.476 0.712 0.460 0.580 0.686 0.486 0.535 0.569 0.570 0.702 0.714 0.737 0.753
1 0.055 0.614 0.708 0.715 0.780 0.787 0.783 0.767 0.795 0.801 0.820 0.803 0.815 0.817 0.821

5 Conclusion

We propose a unification of adversarial visual explanation methods and path-
based feature attribution approaches. Using a linear path between the input
image and its generated adversary, we introduce a tractable method to assign a
weight along this path translating variations of the classifier output. Our method
better assesses feature importance attribution compared to both adversarial gen-
eration approaches and path-based feature attribution methods. We also improve
relevant regions localization performances by reducing the residual reconstruc-
tion errors inherent to adversarial generation methods.
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