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Abstract. Convolutional Neural Networks (CNNs) are widely used for
image classification in a variety of fields, including medical imaging.
While most studies deploy cross-entropy as the loss function in such
tasks, a growing number of approaches have turned to a family of con-
trastive learning-based losses. Even though performance metrics such as
accuracy, sensitivity and specificity are regularly used for the evalua-
tion of CNN classifiers, the features that these classifiers actually learn
are rarely identified and their effect on the classification performance
on out-of-distribution test samples is insufficiently explored. In this pa-
per, motivated by the real-world task of lung nodule classification, we
investigate the features that a CNN learns when trained and tested on
different distributions of a synthetic dataset with controlled modes of
variation. We show that different loss functions lead to different features
being learned and consequently affect the generalization ability of the
classifier on unseen data. This study provides some important insights
into the design of deep learning solutions for medical imaging tasks.
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1 Introduction

Deep learning methods and particularly Convolutional Neural Networks (CNNs)
are, currently, the backbone of most state-of-the-art approaches for medical im-
age classification tasks. The performance of machine learning techniques, how-
ever, can drop significantly when the test data are from a different distribution
than the training data, which is common in real-world applications, such as med-
ical images originating from different hospitals, acquired with different protocols,
or when there is a lack of or variation in high quality annotations.
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Fig. 1: Overview of the used CNN architectures, which are based on LeNet-5
[4]. (a) An encoder-classifier network trained end-to-end with CE. (b) A siamese
network trained with a contrastive loss. (c) The encoder from (b) is frozen and
a classifier (Cls), identical to the one used in (a), is trained on top of it with CE.

Motivated by these obstacles, we study the effect of data variation utilizing
a synthetic dataset with specific modes of variation.The limitations that arise
from a synthetic dataset are clear since its simplified nature does not reflect
the complexity of a real, clinical dataset. However, it is exactly this complexity
that we are trying to avoid, as it would not allow us to evaluate very specific
scenarios in terms of controlling the exact characteristics of the training and
test distributions. This fully controlled setting allows us to create training and
test distributions with similar or contrasting characteristics. We leverage this
dataset to explore the subtlety of the differences between training and test dis-
tributions that is sufficient to hamper performance. We do not suggest that
this simplification can lead to a direct application on disease classification but
rather our primary intent is to investigate the behavior of CNNs under certain
distribution shifts at test time to a very fine level of detail, which would be
impossible to achieve if we shifted to a real-world medical imaging dataset. To
examine thoroughly the features learned by a CNN and how these can influence
the performance for out-of-distribution (OOD) test samples, we utilize principal
component analysis (PCA) and saliency maps. Additionally, we study the in-
creasingly popular contrastive learning-based losses [2] proposed in recent work
[1,8]. Here, we investigate the differences between a cross-entropy (CE) loss and
a contrastive loss, in terms of both performance and resulting CNN features.

Our contributions can be summarized as follows: 1) We design a synthetic
dataset with two modes of variation (binary shape class and average intensity
of the shape appearance) inspired by the real world application of lung nodule
classification; 2) We conduct an experimental study to explore the effects of
two different loss functions (CE and contrastive) on the learned CNN features
(under different training distributions) and the impact on OOD generalization;
3) We use a variety of performance metrics (accuracy, sensitivity, specificity)
and visualizations (PCA, saliency maps) to support and evaluate our findings.
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Our findings and insights will be of interest to practitioners designing machine
learning solutions for medical imaging applications.

2 Materials and Methods

2.1 Data

The synthetic dataset used here is inspired by the real world application of lung
nodule classification and is designed based on two modes of variation. The first
mode is the shape class, which is binary. Abnormalities, such as spikes, on the
perimeter of lung nodules are termed as spiculation and often indicate malig-
nancy, while a smoother outline is often associated with benign disease [5]. We
refer to the two classes as malignant and benign, to form a paradigm similar to
lung nodules. The second mode of variation is appearance represented by the av-
erage intensity of the pixels within each shape. The values range from 110 to 200
with noise added in 10-point increments, thus giving 10 possible values for this
mode, while the background intensities remain fixed for all samples. The syn-
thetic data have been constructed by manually drawing two base shapes (benign
vs malignant) from which the experimental dataset is generated using random
spatial transformations produced by a combined affine and non-rigid FFD-based
transformation model. With Dmode(imal, iben), we denote a distribution where
the average foreground intensity of the malignant and benign shapes is imal and
iben respectively, while mode refers to either the training or the test set.

2.2 Neural network architectures and loss functions

We consider two different losses, a CE loss and a contrastive loss, and conse-
quently two neural network architectures that facilitate the two losses (Figure
1). For simplicity we consider a binary classification task. Both architectures are
based on the well-established LeNet-5 [4]. For the first approach, we use a com-
bined encoder-classifier network fψ with parameters ψ. It is trained end-to-end,
given input image X and label y, via the CE loss (Eq. (1)):

LCE = −y log(fψ(X))− (1− y)log(1− fψ(X)) (1)

For the second approach we use a Siamese network as in [2], trained in two
stages. In the first stage, the network is composed of two copies of the encoder
fθ that share the same weights θ. The input for this system is a pair of im-
ages (X0, X1) with labels (y0, y1) that go through the encoders to produce the
representations fθ(X0) and fθ(X1), which are then fed into the contrastive loss
defined in Eq. (2):

Lcontr =

{
dθ(X0, X1)2, if y0 = y1

{max(0,m− dθ(X0, X1)}2, if y0 6= y1
(2)

where dθ(X0, X1) = ‖fθ(X0)− fθ(X1)‖2 . (3)
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Table 1: Quantitative results for the three experimental scenarios. We report
accuracy (Acc), sensitivity (SE) and specificity (SP), for each of the training
distribution (Dtr), test distribution (Dte) and loss combinations that are de-
scribed in section 3. The results that appear on the table correspond to the
performance on (Dte). For the training set, all metrics have a value of 1.00 and
therefore are not reported on the table.

Dtr Dte Loss Acc SE SP

Experimental Scenario 1

150,150 130,170 CE 1.00 1.00 1.00
150,150 170,130 CE 0.62 0.87 0.37
150,150 130,170 Contrast 1.00 1.00 1.00
150,150 170,130 Contrast 0.15 0.30 0.00

Experimental Scenario 2

180,160 150,190 CE 0.94 0.90 0.98
180,160 190,150 CE 0.96 0.94 0.98
180,160 150,190 Contrast 0.27 0.01 0.53
180,160 190,150 Contrast 1.00 1.00 1.00

Experimental Scenario 3 180,150 150,190 CE 0.59 0.35 0.83

The loss function minimizes the representation-space distance of Eq. (3) be-
tween samples of the same class, while maximizing (bounded by the margin m)
the distance between samples of different classes. In the second stage, the en-
coder fθ is frozen. We then add a classifier gω, with parameters ω, that uses
the representations fθ(X) as input to perform the classification task. Similarly
to the first approach, the encoder fθ uses an image X and a label y as input
and the classifier gω is trained with the CE loss. This way, the contrastive loss
is used to pre-train the encoder of the network, thus leading to a different set of
features that is used for the classification task, compared to the first approach
where training is end-to-end.

3 Experiments and Results

We devise three experimental scenarios to demonstrate the OOD test perfor-
mance by controlling different aspects of the training distribution. For quanti-
tative evaluation, we use accuracy, sensitivity and specificity. We only report
these metrics for the OOD test sets, since at train time they are all 1.00. For
qualitative evaluation, we utilize PCA to get a two-dimensional projection of
the last layer of the CNN before the classification layer and explore the learned
feature space. We also use gradient saliency maps [7] to investigate the areas of
the input image that contribute most to the CNN prediction.

Training details We draw 200 samples from the training distribution, 85%
of which are for training and 15% for validation, and another 200 samples from
the test distribution for testing. The networks are trained using the Adam opti-
mizer [3] (learning rate = 10−4) for 100 epochs and a batch size of 32 samples.
The positive and negative pairs for the contrastive loss are dynamically formed
within each batch. The margin is chosen to be m = 1 based on validation perfor-
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Fig. 2: Experimental Scenario 1 (CE (a), Contrastive (b)) and 2 (CE (c), Con-
trastive (d)): The PCA projections of the last layer of the CNN before the
classification layer. Red hues/’x’ denote malignant samples while blue hues/’o’
benign. Dark hues are used for the training set Dtr(imal, iben) and light hues
for the two test sets Dte(imal, iben). The ellipsoids mark two standard devia-
tions distance from the mean of each distribution. In (a) the benign samples of
Dte(170, 130) are closer to the malignant cluster of Dtr(150, 150) leading to low
specificity. The same is happening in (b) but the malignant samples are also
closer to the benign cluster and hence overall performance is low. In (c) there is
good generalization in both OOD test sets. In (d) both benign and malignant
samples of Dte(150, 190) are close to the opposite cluster of Dtr(180, 160) leading
to low performance.

mance, and the Euclidean distance is used as the distance metric. All experiments
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were conducted using PyTorch [6] and the models were trained on a Titan Xp
GPU.

Experimental Scenario 1

Initially, we consider the case where malignant and benign shapes have the same
average intensity (imal = iben). Specifically, we select Dtr(150, 150), since 150 is
an intensity in the middle of the distribution of the available intensities, and we
use Dte(130, 170) and Dte(170, 130) as these intensities have equal distance from
the training distribution for both malignant and benign shapes. Performance
metrics can be found in the top four rows of Table 1; PCA projections and
saliency maps in Figures 2a, 2b and 3a, 3b, respectively. The CNN fails to
classify the OOD test correctly when imal > iben for either loss.

Experimental Scenario 2

Next, we consider the case where the average intensities of the whole image
(i.e. including the background and not just the pixels inside the shape) are
equal for benign and malignant samples (iglobal mal = iglobal ben). This happens
for Dtr(180, 160), where the average whole image intensity for both malignant
and benign images is 117. Equivalently to the first scenario, the OOD test sets
come from Dte(150, 190) and Dte(190, 150). The CE trained CNN is able to
generalize on both OOD test datasets, while the contrastive loss trained CNN
fails when the relationship between imal and iben is opposite to what it was in
the training distribution. The quantitative results are reported in rows 5-8 of
Table 1, while the qualitative results are visualized in Figures 2c, 2d (PCA) and
3c, 3d (saliency).

Experimental Scenario 3

With the final experiment we want to focus just on one single finding which is the
effect of the smallest possible change to the training distribution of the previous
scenario (i.e. Dtr(180, 150) instead of Dtr(180, 160)), while retaining the same
test distributions. For simplicity, we do not focus on analyzing the behaviour of
the CNN feature space through saliency maps and PCA projections nor do we
use the contrastive loss. We just show results for the CE loss to make sure that
we highlight the drop in performance from 0.94 to 0.59 (last row of Table 1)
even with the smallest of changes.

4 Discussion

There are three underlying features in the synthetic data distribution that a
CNN can try to capture. These are the average intensity of the whole image, the
average intensity of the foreground pixels and the shape of the object. From the
results of Experimental Scenario 1, where the foreground intensities are equal at
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Fig. 3: Experimental Scenario 1 (CE (a), Contrastive (b)) and 2 (CE (c), Con-
trastive (d)): Example images along with their saliency maps. The first row
corresponds to the training set, while the other two to the OOD test sets. In (a)
and (b) the activations are spread out across the whole image, even though in
(a) some patterns regarding the shape are being picked up. In (c) the activations
are strong around the border of the shape, while the background activations are
a bit lower compared to (a). In (d) the activations are at their highest at the
centre of the image (i.e. within the shape).

train time, we observe that for both losses the CNN fails when the malignant
intensity is higher than the benign intensity at test time. This is happening
because in this setting, the whole image average intensity is lower for malignant
(110) than benign (114) samples, due to the more convex shape of the benign
samples, which allows for fewer background pixels. Consequently, the CNN can
easily pick up on that feature to distinguish the two classes regardless of the
loss function. This can be also confirmed by the saliency maps (Figures 3a,3b),
where the activations are spread throughout the whole image, especially for the
contrastive loss. The CE loss appears to pick up some patterns in the border of
the shape, but the separation of the PCA projections between the two classes is
no longer clear for Dte(170, 130) (Figure 2a).
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In Experimental Scenario 2, we remove this discrepancy in the global inten-
sities, and therefore the CNN can no longer use that as a discriminatory feature.
In that case, the CNN that was trained with CE is able to generalize in both
OOD test sets, which can be confirmed by the PCA projections as well, as they
retain the same spatial location as in the training set (Figure 2c). Hence, it must
be capturing the shape information itself. On the other hand, the CNN trained
with the contrastive loss learns to distinguish samples based on the average in-
tensity of the pixels of the shape itself, which is evident from the saliency maps,
where the most important pixels are the ones in the center of the image (i.e.
within the shape) (Figure 3d). Therefore, the CNN fails when imal < iben at
test time, since it was imal > iben at train time, and the PCA projections for
Dte(150, 190)) have the opposite mapping to the one for either Dtr(180, 160)) or
Dte(190, 150)).

Finally, in Experimental Scenario 3, we demonstrate that even the slightest
change (i.e. reduce iben to 150 from 160) can have a dramatic impact on the
performance of the model on OOD test data, as the accuracy drops from 0.93 to
0.59 for Dte(150, 190). These results indicate how unreliable CNNs can be even
when tested on data that are not that far from the training distribution. We
demonstrate this failure on a relatively simple dataset. In real applications the
relationship between features and the task at hand can be expected to be more
complex leading to even worse OOD generalization.

5 Conclusion

Motivated by the important clinical application of lung nodule classification, we
have designed a synthetic dataset from a controlled set of variation modes and
conducted an exploratory analysis to obtain insights into the learned feature
space when trained on different parts of the dataset distribution and how this
affects the OOD generalization. The findings indicate that CNN predictions are
initially based on the whole image average intensity. When this effect is prohib-
ited, the CNN trained with CE focuses on shape, while the contrastive loss leads
the CNN to pick up the average intensity of foreground pixels. Moving forward,
we will explore how to constrain the feature space in an automated manner by
incorporating application-specific prior knowledge and apply this approach on
clinical data.
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