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Abstract. Brain aging, and more specifically the difference between
the chronological and the biological age of a person, may be a promising
biomarker for identifying neurodegenerative diseases. For this purpose
accurate prediction is important but the localisation of the areas that
play a significant role in the prediction is also crucial, in order to gain
clinicians’ trust and reassurance about the performance of a prediction
model. Most interpretability methods are focused on classification tasks
and cannot be directly transferred to regression tasks. In this study,
we focus on the task of brain age regression from 3D brain Magnetic
Resonance (MR) images using a Convolutional Neural Network, termed
prediction model. We interpret its predictions by extracting importance
maps, which discover the parts of the brain that are the most important
for brain age. In order to do so, we assume that voxels that are not
useful for the regression are resilient to noise addition. We implement a
noise model which aims to add as much noise as possible to the input
without harming the performance of the prediction model. We average
the importance maps of the subjects and end up with a population-
based importance map, which displays the regions of the brain that are
influential for the task. We test our method on 13,750 3D brain MR
images from the UK Biobank, and our findings are consistent with the
existing neuropathology literature, highlighting that the hippocampus
and the ventricles are the most relevant regions for brain aging.

Keywords: Brain Age Regression · Interpretability · Deep Learning ·
MR Images.

1 Introduction

Alzheimer’s disease (AD) is the most common cause of dementia [3]. AD leads
to the atrophy of the brain more quickly than healthy aging and is a progressive
neurodegenerative disease, meaning that more and more parts of the brain are
damaged over time. The atrophy primarily appears in brain regions such as
hippocampus, and it afterwards progresses to the cerebral neocortex. At the
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Fig. 1: Overview of the proposed idea. A noise model is trained with the purpose
of adding as much noise as possible to the input. The output is a noise mask,
in which noise sampled from the standard normal distribution is added. The
result is then added to the input image and is used as an input to a pretrained
prediction model with frozen parameters. The aim is to create a noisy image
that will maximize the noise level while also not harming the performance of the
prediction model.

same time, the ventricles of the brain as well as cisterns, which are outside of
the brain, enlarge [23].

Healthy aging also results in changing of the brain, following specific patterns
[1]. Therefore, a possible biomarker used in AD is the estimation of the brain
(biological) age of a subject which can then be compared with the subject’s
real (chronological) age [8]. People at increased risk can be identified by the
deviation between these two ages and early computer-aided detection of possible
patients with neurodegenerative disorders can be accomplished. For this reason,
a large body of research has focused on estimating brain age, especially using
Magnetic Resonance (MR) images, which have long been used successfully in
the measurement of brain changes related to age [10].

Recently, deep learning models have proved to be successful on the task of
brain age estimation, providing relatively high accuracy. They are designed to
find correlation and patterns in the input data and, in the supervised learning
setting, associate that with a label, which in our case is the age of the subject.
The models are trained on a dataset of MR images of healthy brains, estimating
the expected chronological age of the subject. During training, the difference of
the chronological age and the predicted age needs to be as small as possible.
During test time, an estimated brain age larger than the subject’s chronological
age indicates accelerated aging, thus pointing to a possible AD patient.

Convolutional Neural Networks (CNNs) are used with the purpose of an
accurate brain age estimation while using the minimum amount of domain in-
formation since they can process raw image data with little to no preprocessing
required. Many studies provide very accurate results, with mean absolute error
(MAE) as low as around 2.2 years [19,17,16]. However, most of these approaches
purely focus on minimization of the prediction error while considering the net-
work as a black box. Recent studies have started to try to identify which regions
are most informative for age prediction. For example, in [6] the authors provided
an age prediction for every patch of the brain instead of whole brain. Although
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the predictions and results presented in [6] were promising, and the localisation
was meaningful, the use of large patches meant that the localisation was not
very precise. Similar approaches has been explored, such as [4] in which slices
of the brain were used instead of patches. In [20], the authors provided an age
estimation per voxel but the accuracy of the voxel-wise estimations dropped sig-
nificantly. In [15], an ensemble of networks and gradient-based techniques [26]
were used in order to provide population-based explanation maps. Finally, 3D
explanation maps were provided in [5], but the authors used image translation
techniques and generative models, such as VAE-GAN networks.

In computer vision, a common approach to investigate black-box models such
as CNNs is to use saliency maps, which show which regions the network focuses
on, in order to make the prediction. An overview of the existing techniques for
explainability of deep learning models in medical image analysis may be found in
[25]. Gradient-based techniques, such as guided backpropagation [27], and Grad-
CAM [24], make their conclusions based on the gradients of the networks with
respect to a given input. Grad-CAM is one of the most extensively used approach
and usually results in meaningful but very coarse saliency maps. Gradient-based
techniques are focused on classification and to our knowledge they do not work
as expected for regression task because they detect the features that contributed
mostly to the prediction of a specific class. Occlusion-based techniques [28] have
also been widely explored in the literature and they can be used both for classifi-
cation and regression tasks. The idea behind occlusion techniques is very simple:
The performance of the network is explored after hiding different patches of the
images, with the purpose of finding the ones that affect the performance the
most. It is a promising and straightforward approach but bigger patches provide
coarse results. On the other hand, the smaller the patches, the greater the com-
putational and time constraints are, which can be a burden in their application.

A recent approach which leverages the advantages of occlusion techniques
while also keeping computational and time costs relatively low is U-noise [14]
which uses the addition of noise in the images pixel-wise, while keeping the
performance of the network unchanged with the purpose of understanding where
the deep learning models focus in order to do their predictions. The authors
created interpretability maps for the task of pancreas segmentation using as
input 2D images using noise image occlusion. In this paper, inspired by the
work described above [14] and the idea that when a voxel is not important for
the task, then the addition of noise on this specific voxel will not affect the
performance of our network, we make the following contributions: 1) We adapt
the architecture of U-noise (Figure 1), which was originally used for pancreas
segmentation, for the task of brain age regression and visualise the parts of the
brain that played the most important role for the prediction by training a noise
model that dynamically adds noise to the image voxel-wise, providing localised
and fine-grained importance maps. 2) We extend the U-noise architecture to 3D
instead of 2D to accommodate training with three-dimensional volumetric MR
images; 3) We propose the use of an autoencoder-based pretraining step on a
reconstruction task to facilitate faster convergence of the noise model; 4) We
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provide a population-based importance map which is generated by aggregating
subject-specific importance maps and highlights the regions of the brain that
are important for healthy brain aging.

2 Materials & Methods

2.1 Dataset & Preprocessing

We use the UK Biobank (UKBB) dataset [2] for estimating brain age and ex-
tracting the importance maps. UKBB contains a broad collection of brain MR
images, such as T1-weighted, and T2-weighted. The dataset we use in this work
includes T1-weighted brain MR images from around 15,000 subjects. The images
are provided by UKBB skull-striped and non-linearly registered to the MNI152
space. After removing the subjects lacking the information of age, we end up with
13,750 subjects with ages ranging from 44 to 73 years old, 52,3% of whom are
females and 47.7% are males. The brain MR images have a size of 182x218x182
but we resize the 3D images to 140x176x140 to remove a large part of the back-
ground and at the same time address the memory limitations that arise from
the use of 3D data, and normalise them to zero mean and unit variance.

2.2 Brain Age Estimation

We firstly train a CNN, the prediction model, fθ, with parameters θ, for the
task of brain age regression. We use the 3D brain MR images as input to 3D
ResNet-18, similar to the one used in [6], which uses 3D convolutional layers
instead of 2D [11]. The network is trained with a Mean Squared Error (MSE)
loss and its output is a scalar representing the predicted age of the subject in
years.

2.3 Localisation

An overview of the proposed idea is shown in Figure 1.

U-Net Pretraining The prediction model and the noise model have identical
architectures (2D U-Net [21]) in [14], as they are both used for image-to-image
tasks, which are segmentation and noise mask generation, respectively. There-
fore, in that case, the noise model is initialized with the weights of the pretrained
prediction model. However, in our case, the main prediction task is not an image-
to-image task but rather a regression task and thus, the prediction model’s (a
3D ResNet as described above) weights cannot be used to initialize the noise
model. Instead, we propose to initially use the noise model fψ with parame-
ters ψ, which has the architecture of a 3D U-Net as a reconstruction model, for
the task of brain image reconstruction. By pretraining the noise model with a
reconstruction task before using it for the importance map extraction task, we
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facilitate and accelerate the training of our U-noise model, since the network has
already learned features relating to the structure of the brain.

The reconstruction model consists of an encoder and a decoder part. It uses
as input the 3D MR volumes and its task is to reconstruct the volumes as well
as possible. It is trained with a voxel-wise MSE loss. The number of blocks used,
meaning the number of downsample and upsample layers, is 5, while the number
of output channels after the first layer is 16.

Brain Age Importance Map Extraction For the extraction of the impor-
tance maps, we extend the U-noise architecture [14] to 3D. The idea behind
U-noise is that if one voxel is important for the prediction task, in our case
brain age regression, the addition of noise on it will harm the performance of
the prediction model. On the other hand, if a voxel is not relevant for the task,
the addition of noise will not affect the performance.

More specifically, after the pretraining phase with the reconstruction loss,
the 3D U-Net, i.e. noise model, is used for the task of extraction of a 3D noise
mask that provides a noise level for every voxel of the input 3D image. A sigmoid
function is applied so the values of the mask are between 0 and 1. The values
are scaled to [vmin, vmax], where vmin, vmax are hyperparameters. The rescaled
mask is then multiplied by ε ∼ N (0, 1), which is sampled from the standard
normal distribution and the output is added to the input image element-wise in
order to extract the noisy image. Given an image X, its noisy version can be
given by Equation (1):

Xnoisy = X + fψ(X)(vmax − vmin)ε+ vmin, (1)

We then use the noisy image as input for the already trained prediction model
with frozen weights, and see how it affects its performance. The purpose is to
maximise the noise level in our mask, while simultaneously keeping the perfor-
mance of our prediction model as high as possible. In order to achieve that, we use
a loss function with two terms, the noise term, which is given by −log(fψ(X))
and motivates the addition of noise for every voxel, and the prediction term,
which is an MSE loss whose purpose is to keep the prediction model unchanged.
The two loss terms are combined with a weighted sum, which is regulated by the
ratio hyperparameter r. It is important to note that at this stage the parameters,
θ, of the prediction model, fθ, are frozen and it is not being trained. Instead,
the loss function L, is driving the training of the noise model fψ. Given an input
image X and label y, the loss function L takes the form shown in Equation (2)

L = (fθ(X)− y)2︸ ︷︷ ︸
prediction term

−r log(fψ(X))︸ ︷︷ ︸
noise term

(2)

The values vmin, vmax, as well as r are hyperparameters and are decided based
on the performance of our noise model on the validation set.
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Fig. 2: Six different slices of the population-based importance map on top of the
normalised average of the brain MR Images of the test set. The most important
parts of the brain for the model’s prediction are highlighted in red. The most
significant regions for the task of brain aging are mesial temporal structures
including the hippocampus, brainstem, periventricular and central areas. The
results are in agreement with the relevant literature and previous studies.

3 Results

From the 13,750 3D brain images, 75% are used for the training set, 10% for
the validation set and 15% for the test set. All the networks are trained with
backpropagation [22] and adaptive moment estimation (Adam) optimizer [13]
with initial learning rate lr=0.0001, reduced by a factor of 10 every 10 epochs.
The experiments are implemented on an NVIDIA Titan RTX using the Pytorch
deep-learning library [18].

3.1 Age Estimation

We train the prediction model for 40 epochs using a batch size of 8 using back-
propagation. We use MSE between the chronological and biological age of the
subject as a loss function. The model achieves a mean absolute error (MAE) of
about 2.4 years on the test set.
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3.2 Population-based importance maps

The noise model is trained for 50 epochs and with a batch size of 2, on four GPUs
in parallel. Different values were tested for hyperparameters vmin, vmax and r.
The chosen values, for which the network performed the best in the validation
set, are vmin = 1, vmax = 5 and r = 0.1. We average the importance maps for
all the subjects of the test set, ending up with a population-based importance
map. We use a threshold in order to keep only the top 10% of the voxels with the
lowest tolerated noise levels, meaning the most important ones for brain aging.
We then apply a gaussian smoothing filter with a kernel value of 1. Different
slices of the 3D population-based importance map are shown in Figure 2. As it
can be seen, the areas that are the most relevant for brain aging according to the
model’s predictions are mesial temporal structures including the hippocampus,
brainstem, periventricular and central areas.

4 Discussion

Understanding the logic behind a model’s decision is very important in assessing
trust and therefore in the adoption of the model by the users [9]. For instance,
the users should be assured that correct predictions are an outcome of proper
problem representation and not of the mistaken use of artifacts. For this reason,
some sort of interpretation may be essential in some cases. In the medical domain
[12], the ability of a model to explain the reasoning behind its predictions is an
even more important property of a model, as crucial decisions about patient
management may need to be made based on its predictions.

In this work, we explored which parts of the brain are important for aging.
In order to do so, we made the assumption that unimportant voxels/parts of
the brain are not useful for brain age estimation and are not utilized by the
prediction model. We trained a prediction model, which accurately estimated
brain aging, and a noise model, whose purpose is to increase the noise in the
input images voxel-wise, while also keeping the performance of the prediction
model unaffected. As can be seen from Figure 2, our importance maps are in
agreement with the existing neuropathology literature [23]. More specifically, it is
shown that the hippocampus and parts of the ventricles are where the prediction
model focuses to make its decisions.

On the other hand, the differences in the cerebral cortex appear to not be
getting captured by the network. In our understanding, there are two reasons
behind this. Firstly, the age range of the subjects (44-73 years old) is not large
enough for the network to make conclusions. At the same time, the changes in
the cerebral cortex are more noticeable after the age of 65 years. In our case, we
probably do not have enough subjects in that age range in order to facilitate the
network into capturing these differences.

The images that have been used in this study are non-linearly registered,
since UKBB provides them ready for use and in the literature more works use
the provided preprocessed dataset and therefore, comparison is easier to be done.
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However, it has been noticed that using non-linearly registered images may lead
to the network’s missing of subtle changes away from the ventricles, such as
cortical changes [7].

In the future, a similar experiment will be conducted with linearly registered
images instead of non-linearly registered ones because we believe that, although
the performance of the prediction model might be slightly lower, the importance
maps will not only be focused on the ventricles and the hippocampus, but also on
more subtle changes in the cerebral cortex. Additionally, UKBB provides a va-
riety of other non-imaging features, including biomedical and lifestyle measures,
and we intend to test our method on related regression and classification tasks,
such as sex classification. In the case of classification tasks we will be also com-
paring against gradient-based interpretability approaches, such as Grad-CAM
[24] and guided backpropagation [27], since the setting allows for their use.

5 Conclusion

In this work, we extend the use of U-noise [14] for 3D inputs and brain age
regression. We use 3D brain MR images to train a prediction model for brain
age and we investigate the parts of the brain that play the most important role for
this prediction. In order to do so, we implement a noise model, which aims to add
as much noise as possible in the input image, without affecting the performance
of the prediction model. We then localise the most important regions for the task,
by finding the voxels that are the least tolerant to the addition of noise, which
for the task of brain age estimation are mesial temporal structures including
the hippocampus and periventricular areas. Moving forward, we plan to test our
interpretability method on classification tasks, such as sex classification as well,
and compare with gradient-based methods, which are valid for such tasks.
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