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Abstract. This paper presents a novel convolutional neural network
framework for multi-level classification of surgical tools. Our classifica-
tions are obtained from multiple levels of the model, and high accuracy
is obtained by adjusting the depth of layers selected for predictions. Our
framework enhances the interpretability of the overall predictions by pro-
viding a comprehensive set of classifications for each tool. This allows
users to make rational decisions about whether to trust the model based
on multiple pieces of information, and the predictions can be evaluated
against each other for consistency and error-checking. The multi-level
prediction framework achieves promising results on a novel surgery tool
dataset and surgery knowledge base, which are important contributions
of our work. This framework provides a viable solution for intelligent
management of surgical tools in a hospital, potentially leading to signif-
icant cost savings and increased efficiencies.

Keywords: Surgical tool dataset · multi-level predictions · hierarchical classi-
fication · surgery knowledge base.

1 Introduction

Surgical tool and tray management is recognized as a difficult issue in hospi-
tals worldwide. Stockert and Langerman [16] observed 49 surgical procedures
involving over two-hundred surgery instrument trays, and discovered missing,
incorrect or broken instruments in 40 trays, or in 20% of the sets. Guedon et al.
[5] found equipment issues in 16% of surgical procedures; 40% was due to un-
availability of a specific surgical tool when needed. Zhu et al. [24] estimated that
44% of packaging errors in surgical trays at a Chinese hospital were caused by
packing the wrong instrument, even by experienced operators. This is significant
given the volumes; for example, just one US medical institution processed over
one-hundred-thousand surgical trays and 2.5 million instruments annually [16].

There are tens of thousands of different surgical tools, with new tools con-
stantly being introduced. Each tool differs in shape, size and complexity – often
in very minor, subtle, and difficult to discern ways, as shown in Fig.1. Surgi-
cal sets, which can contain 200 surgical tools, are currently assembled manually
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Fig. 1. Surgical tools - Hoffman Compact instruments and implants

[11] but this is a difficult task even for experienced packing technicians. Given
that surgical tool availability is a mission-critical task, vital to the smooth func-
tioning of a surgery, ensuring that the tool is identified accurately is extremely
important. Al Hajj et al. [2] reviewed convolutional neural network (CNN) ar-
chitectures and a range of imaging modalities, applications, tasks, algorithms
and detection pipelines used for surgical segmentation. They pointed out that
hand crafted and hand engineered features had also been used for this task, and
Bouget et al. [3] reviewed predominant features used for object-specific learn-
ing with surgical tools, and listed colour, texture, gradient and shape as being
important for detection and classification. Yang et al. [19] presented a review
of the literature regarding image-based laparoscopic tool detection and tracking
using CNNs, including a discussion of available datasets and CNN-based detec-
tion and tracking methods. While CNNs can therefore provide viable solutions
for surgical tool management, understanding how the CNN makes a prediction
is important for building trust and confidence in the system.

Interpretibility of predictions is then a critical issue – Rudin et al. [12] stated
that interpretable machine learning is about models that are understood by hu-
mans, and interpretability can be achieved via separation of information as it
traverses through the CNN models. Zhang et al. [21] developed an interpretable
model that provided explicit knowledge representations in the convolutional lay-
ers (conv-layers) to explain the patterns that the model used for predictions.
Linking middle-layer CNN features with semantic concepts for predictions pro-
vided interpretation for the CNN output [15, 22, 23]. How mid-level features of
a CNN represent specific features of surgical tools and how they can provide
hierarchical predictions is the focus of our work. CNNs learn different features
of images at different layers, with higher layers extracting more discriminative
features [20]. By associating feature maps at different CNN levels to levels in
a hierarchical tree, a CNN model could incorporate knowledge of hierarchical
categories for better classification accuracy. The model developed by Ferreira
et al. [4] addressed predictions across five categorisation levels: gender, family,
category, sub-category and attribute. The levels constituted a hierarchical struc-
ture, which was incorporated in the model for better predictions. The benefit
of this hierarchical and interpretable approach for surgical tool management is
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that end users can then make rational, well reasoned decision on whether they
can trust the information presented to them [12].

Wang et al. [18] discussed an approach to fine tuning that used wider or
deeper layers of a network, and demonstrated that this significantly outper-
formed the traditional approaches which used pre-trained weights for fine-tuning.
Going deeper was accomplished by constructing new top or adaptation layers,
thereby permitting novel compositions without needing modifications to the pre-
trained layers for a new task. Shermin et al. [14] showed that increasing network
depth beyond pre-trained layers improved results for fine-grained and coarse
classification tasks. We build on these approaches in our multi-level predictor.

Table 1. Surgical Datasets

Characteristic CATARACTS Cholec80 Surgical Tools

Size or Instances 50 videos 80 Videos 18300 images
Database Focus Cataract Surgeries Cholecystectomy

Surgeries
Orthopaedics and
General Surgery

Type of Surgery Open Surgery Laparoscopic Open Surgery
Default Task Detection Detection Classification
Type of Item Videos Videos RGB Images
Number of Classes 21 7 361
Images Background Tissue Tissue Flat colours
Image Acquisition
Platform / Device

Toshiba 180I cam-
era and MediCap
USB200 recorder

Not Specified Canon D-80 Camera
and Logitech 922 Pro
Stream Webcam

Image Illumination Microscope Illumina-
tion

Fibre-optic in-
cavity

Natural Light, LED,
Fluorescent

Distance to Object V.Close - Microscope Close - in-cavity 30-cms to 60-cms
Annotations Binary Bounding Boxes Multiple level
Dataset Organisation 500,000 frames each

in Training and Test
Sets

86,304 & 98,194
frames in Train-
ing and Test Set

14,640 images in
Training and 3,660
in Validation set

Structure Flat Flat Hierarchical
Image Resolution 1920x1080 pixels Not Specified 600 x 400 pixels

2 Surgical Tool Dataset Overview

Kohli et al. [7] and Maier-Hein et al. [10] discussed the problems faced by the
machine learning community stemming from a lack of data for medical image
evaluation, which significantly impairs research in this area. There is just not
enough high quality, well annotated data, representative of the particular surgery
– a shortfall that needs to be addressed. Most medical datasets are one-off solu-
tions for specific research projects, with limited coverage and restricted in num-
bers of images or data points [10]. To address this, we plan to create and curate
a surgical tool dataset with tens of thousands of tool images across all surgical
specialities with high quality annotations and reliable ground-truth information.
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Since surgery is organised along specialities, each with its own categories, a hi-
erarchical classification of surgical tools would be extremely valuable. We there-
fore developed our initial surgical dataset with a hierarchical structure based on
the surgical speciality, pack, set and tool. We captured RGB images of surgical
tools using a DSLR camera and a webcam and tried to provide consideration
to achieving viewpoint invariant object detection with different backgrounds,
illumination, pose, occlusion and intra-class variations captured in the images.
We focused on two specialities – Orthopaedics and General Surgery – of the 14
specialities reported by the American College of Surgeons [1]. The former offers
a wide range of instruments and implants, while the latter covers the most com-
mon surgical tools. We propose to add the other specialities in a phased manner,
and will make the dataset publicly available to facilitate research in this area.

CNNs have been successfully used for the detection, segmentation and recog-
nition of surgical tools [9]. However, the datasets currently available for sur-
gical tool detection present very small instrument sets; to illustrate this, the
Cholec80, EndoVis 2017 and m2cai16-tool datasets have seven instruments, the
CATARACTS dataset has 21 instruments, the NeuroID dataset has eight in-
struments and the LapGyn4 Tool Dataset has three instruments [2, 17]. While
designing CNNs to recognise seven or eight instruments for research purposes
may be justifiable, this is nowhere nearly adequate enough for real work condi-
tions. Any model trained using this data is unlikely to be usable anywhere else,
not even in the same hospital six months later. We needed to develop a new
dataset for our work as these surgical tool datasets did not offer a sufficiently
large variety or number of tools for analysis, nor were they arranged hierarchi-
cally. A comparison of our dataset with CATARACTS [2] and Cholec80 [17],
two important publicly available datasets, is presented in Table 1.

Table 2. Surgery Knowledge Base (Excerpt)

Speciality Pack Set Tool

Orthopaedics VA Clavicle Plating
Set

LCP Clavicle Plates Clavicle Plate 3.5
8 Hole Right

Orthopaedics Trimed Wrist
Fixation System

Fixation Fragment
Specific

Dorsal Buttress
Pin 26mm

General Surgery Cutting & Dissecting Scissors 9 Metzenbaum
Scissors

General Surgery Clamping &
Occluding

Forceps 6 Babcock Tissue
Forceps

2.1 Surgery Knowledge Base

Setti [13] points out that most public benchmark datasets only provide images
and label annotations, but providing additional prior knowledge can boost per-
formance of CNNs. To complement the dataset, we developed a comprehensive
surgery knowledge-base (Table 2) as an attribute-matrix which makes rich in-
formation available to the training regime. This proved to be a convenient and
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useful data structure that captures rich information of class attributes – or the
nameable properties of classes – and makes it readily available for computational
reasoning [8]. We developed the knowledge representation structure for 18,300
images to provide rich, multi-level and comprehensive information about each
image. The attribute matrix data structure proved to be easy to work with,
simple to change and update, and it also provided computational efficiencies.

3 Experimental Method

We implemented our project in Tensorflow v-2.4.1 and Keras v-2.4.3. Our archi-
tecture consists of a ResNet50V2 network [6] which we trained on the Surgical
Tool training dataset, by replacing the top layer with a dropout and dense layer
with 361 outputs. We initially did not use the knowledge base annotations, only
the tool labels and trained with the configuration in Table 4 with early stopping
on validation categorical accuracy. We were able to obtain good predictions from
this model with accuracy score at 93.51%, but only at the tool level. We then
used this pre-trained architecture with surgical tool weights as our base model,
froze the base model, and added separate classification pipelines, one for each
prediction of interest - speciality, set, pack and tool (See Fig. 2). We relied on
the knowledge base annotations which provided data for two specialities, twelve
packs, thirty-five sets and 361 possible tools, and used it to create data-frames
for the training and validation data. Each image was associated with the relevant
annotations for each output, in the form of columns of text values or categori-
cal variables representing the multiple classes for each output. This multi-task
framework effectively shared knowledge of the different attribute categories for
each image or visual representation. We developed a custom data handler for
the training data (x set) and for the labels for each of the four outputs (y cat,
y pack, y set, y tool), and used one hot encoding to represent the categorical
variables in our model. We then implemented training and validation data gen-
erators based on our custom data handler to provide batches of data to the
model. Our model was compiled with one input (image) and four outputs.

Table 3. Results - Val accuracy with output at different layers

All Outputs at: Total Pa-
rameters

Parameters
Trained

Speciality Pack Set Tool

Conv2 block1 1 relu 700,570 686,490 0.956 0.356 0.258 0.091
Conv3 block1 1 relu 1,210,266 948,634 0.989 0.621 0.507 0.231
Conv4 block1 1 relu 3,060,634 1,472,922 0.997 0.927 0.851 0.663
Conv5 block1 1 relu 11,625,370 2,521,498 0.999 0.975 0.945 0.890

We tested outputs at different layers to evaluate the impact of changing the
depth of the network, with the results in Table 3. In each experiment, parameters
available and actually trained were controlled by adjusting the numbers of layers.
An operation within a block in ResNet50V2 consisted of applying convolution,
batch normalisation and activation to an input; we obtained our outputs after
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Input

Block 2
conv2_block1_1_relu

Speciality Predictions

Pack Predictions

Set Predictions

Tool Predictions

DenseDense Dropout   GAP DenseDense Dropout   GMP

DenseDense Dropout   GMP

DenseDense Dropout   GMP

DenseDense Dropout   GMP

Block 3
conv3_block1_1_relu

Block 4
conv4_block1_1_relu

Block 5
conv5_block1_1_relu

Block 1

Base Model Classification PipelinesOutputs

300 X 200 Image

Global Max Pooling

Fig. 2. Resnet50V2 Architecture with Multiple Outputs

the first operation in each block. These outputs were fed to external global max
pooling and dense layers. A dropout layer regulated training – we replaced this
with a batch normalisation layer but results did not improve. Since this was a
multi-class problem, a dense layer with softmax activation was used for the final
classification of each prediction, customised to the relevant number of classes.
As we expected, better results were obtained by including more layers and by
training more parameters – best results were obtained by including all layers up
to Block 5. However, it is noteworthy that high accuracy was obtained for specific
predictions even early in the model – for example, predictions for speciality were
at 95.6% by block 2, for pack and set were at 92.7% and 85.10% at block 4 and
for tool at 89% at block 5. Clearly it was possible to obtain accurate predictions
for higher level categories using early layers of the model. This is explored further
with the objective of improving interpretability for the end user, while reducing
the total number of parameters that needed to be trained in the model.

Table 4. Training Configuration

Parameter Optimiser Learning
Rate

Batch
Size

Activation Loss Metric

Value Adam 0.001 64 Softmax Categorical
Crossentropy

Categorical
Accuracy

The training set images from the surgery dataset and annotations from the
knowledge base were used for training, with real time training data augmentation
– including horizontal flip, random contrast and random brightness operations.
We used the configuration in Table 4, the initial learning rate of 0.001 was
decreased to 0.0001 at epoch 45 and to 0.00005 at epoch 75. A dropout rate of
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0.2 was imposed. We implemented early stopping on val loss with a patience of
20 epochs. The total parameters in the model were 10,511,258, and parameters
trained were 1,407,386 in each of the experiments.

Orthopaedics

Trimed Wrist Fixation SystemHoffman Compact

Fragment Specific Pegs and Screws

Dorsal Ulnar Plate 7 
Hole

Radial Column Plate 7 
Hole

Volar Shear Plate Left

Speciality

Pack

Set

Tool

92.6%

77.4%

81.8%

90.2%

Fig. 3. Interpretable multi-level predictions

1. ImageNet Training: For an initial baseline experiment, we used a ResNet50V2
model with ImageNet weights and four separate classification outputs were
trained, one for each hierarchy – speciality, set, pack and tool.

2. Surgical Tool Training: We used the pre-trained base model with surgical tool
weights, and trained the model with its four classification pipelines using the
configuration as in Table 4 and architecture as in Fig. 2.

3. Depth Adjusted Surgical Tool Training: We used the pre-trained model with
surgical tool weights as before, but changed the levels within the blocks of
the ResNet-50V2 model from which we obtained outputs, thereby adjusting
the depth of training. The outputs from Block 5 and 2 were obtained from
conv”x” block1 1, and from Block 3 and 4 were from conv”x” block4 2. We
did this to evaluate the effects of changing depths on the prediction accuracy;
this was a minor change within the block but the total number of parameters
trained were maintained the same.

4 Results and Conclusions

Our results, on a separate test subset of data, are shown in Table 5. The test
data was images that the model had not seen before, as a sample of 400 random
images across all classes had been reserved for testing. Training with ImageNet
weights did not provide good results, but the use of surgical tool weights demon-
strated that the model had captured relevant information about the dataset and
was able to provide good predictions at multiple levels. In this architecture, by
extracting multiple predictions along layers from coarse to fine as data traverses
the CNN, early layers provided predictions corresponding to specialities while
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Table 5. Architecture Results - Macro score or average for all classes

Level Metric ImageNet Surgical-
Tools

Surgical-
Tools Depth
Adjusted

Speciality score Accuracy score 0.90 0.94 0.94
Hamming Loss 0.10 0.06 0.06
f1 Score 0.73 0.84 0.83
Precision score 0.93 0.95 0.95
Recall score 0.96 0.99 0.99

Pack score Accuracy score 0.41 0.63 0.77
Hamming Loss 0.59 0.37 0.23
f1 Score 0.25 0.53 0.73
Precision score 0.43 0.67 0.76
Recall score 0.30 0.55 0.73

Set score Accuracy score 0.31 0.84 0.89
Hamming Loss 0.69 0.16 0.11
f1 Score 0.24 0.79 0.84
Precision score 0.36 0.82 0.85
Recall score 0.25 0.80 0.87

Tool score Accuracy score 0.20 0.90 0.90
Hamming Loss 0.80 0.10 0.10
f1 Score 0.16 0.86 0.86
Precision score 0.78 0.91 0.91
Recall score 0.27 0.91 0.90

later layers provide finer predictions, such as tool classifications (Fig. 3). It was
easy for the CNN to distinguish between our two speciality classes, since Gen-
eral Surgery tools are visually different from orthopaedic tools – as we add more
specialities where the visual distinction is not so clear, we may need to train at
deeper levels. As the classes increased to 12, 35 and 361 for pack, set and tool
respectively, predictions from deeper layers were needed. These hierarchical pre-
dictions are expected to provide better interpretability since multiple predictions
can be tested and evaluated against each other for consistency or error by the
end user. Adjusting the depths of layers used as outputs for predictions improved
the results, even within the same block, demonstrating that more features are
learned as the data travels through the CNN layers.

We developed a CNN framework that successfully utilised the hierarchical
nature of surgical tool classes to provide a comprehensive set of classifications
for each tool. This framework was deployed and tested on a new surgical tool
dataset and knowledge base. The multi-level prediction system provides a good
solution for classification of other types of medical images, if they are hierarchi-
cally organised with a large number of classes.
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