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Abstract. In clinical applications, neural networks must focus on and highlight
the most important parts of an input image. Soft-Attention mechanism enables
a neural network to achieve this goal. This paper investigates the effectiveness
of Soft-Attention in deep neural architectures. The central aim of Soft-Attention
is to boost the value of important features and suppress the noise-inducing fea-
tures. We compare the performance of VGG, ResNet, Inception ResNet v2 and
DenseNet architectures with and without the Soft-Attention mechanism, while
classifying skin lesions. The original network when coupled with Soft-Attention
outperforms the baseline[16] by 4.7% while achieving a precision of 93.7% on
HAM10000 dataset [25]. Additionally, Soft-Attention coupling improves the sen-
sitivity score by 3.8% compared to baseline[31] and achieves 91.6% on ISIC-
2017 dataset [2]. The code is publicly available at github1.

1 Introduction

Skin cancer is the most common cancer and one of the leading causes of death world-
wide. Every day, more than 9500 people2 in the United States are diagnosed with skin
cancer, with 3.6 million people3 diagnosed with basal cell skin cancer each year. Early
diagnosis of the illness has a significant effect on the patients’ survival rates. As a result,
detecting and classifying skin cancer is important.

It is difficult to distinguish between malignant and benign skin diseases because
they look so similar. Although a dermatologist’s visual examination is the first step in
detecting and diagnosing a suspicious skin lesion, it is usually followed by dermoscopy
imaging for further analysis [32]. Dermoscopy images provide a high-resolution mag-
nified image of the infected skin region, but they are not without their drawbacks. Due
to the image size being large, it becomes difficult for the feature extractors to extract out
the relevant features for classification. Various methods such as Segmentation and de-
tection, Transfer learning, General Adversarial networks, etc. have been used to detect
and classify skin cancer. Despite significant progress, skin cancer classification is still
a difficult task. This is due to the lack of annotated data and low inter-class variation.

1 https://github.com/skrantidatta/Attention-based-Skin-Cancer-Classification
2 https://www.skincancer.org/skin-cancer-information/skin-cancer-facts/
3 https://www.skincancer.org/skin-cancer-information/basal-cell-carcinoma/
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Furthermore, the task is complicated by contrast variations, color, shape, and size of the
skin lesion, as well as the presence of various artifacts such as hair and veins. Inspired
by the work done in [18], this paper studies the effect of soft attention mechanism in
deep neural networks. Deep learning architectures identify the image class by learning
the salient features and nonlinear interactions. The soft-attention mechanism improves
performance by focusing primarily on relevant areas of the input. Moreover, the soft-
attention mechanism makes the image classification process transparent to medical per-
sonnel, as it maps the parts of the input that the network uses to classify the image,
thereby, increasing trust in the classification model.

Following Krichevsky[12], large-scale image classification tasks using deep convo-
lutional neural networks have become common. As reported in the paper[3], the task of
skin cancer classification using images has improved rapidly since the implementation
of Deep Neural Networks. To make progress, we suggest that soft attention be used to
identify fine-grained variability in the visual features of skin lesions.

Existing art in the field of skin cancer classification used streamlined pipelines based
upon current Computer Vision [4]. Masood et al. in their paper [13] proposed a general
framework from the viewpoint of computer vision, where the methods such as calibra-
tion, preprocessing, segmentation, balancing of classes and cross validation are used
for automated melanoma screening. In 2018, Valle et al. [26] investigated ten differ-
ent methodologies to evaluate deep learning models for skin lesion classification. Data
augmentation, model architecture, image resolution, input normalization, train dataset,
use of segmentation, test data augmentation, additional use of support vector machines,
and use of transfer learning are among the ten methodologies they evaluated. They
stated that data augmentation had the greatest impact on model efficiency. The same
observation is confirmed by Perez’s 2018 paper ”Data Augmentation for Skin Lesion
Analysis”[15].

Nonetheless, the problems of low inter-class variance and class imbalance in skin
lesion image datasets remain, seriously limiting the capabilities of deep learning mod-
els[30]. To fix the lack of annotated data, Zunair et al.[32] proposed the use of adversar-
ial training and Bissoto et al.[1] proposed the use of Generative Adversarial Networks
to produce realistic synthetic skin lesion photos. Zhang et al. [31] in 2019 proposed the
attention residual learning convolutional neural network for skin lesion classification
which is based on self attention mechanism.

In this paper, we suggest using a Soft Attention mechanism in conjunction with a
Deep Convolutional Neural Network (DCNN) to classify skin cancer. Rather than using
attention modules with residual blocks and stacking them one after another like in paper
[31], we integrated the soft attention module into the various DCNN architectures such
as Inception ResNet v2[22], which improved the performance of those architectures.
Our model used the DCNN to extract the features maps from the skin lesion images, and
the soft attention module assisted the DCNN in focusing more on the important features
of the images without completely discarding the other features. Our paper’s primary
contribution is that we offer a unique technique for integrating soft attention mechanism
with DCNNs to optimize performance, and we outperformed the state-of-the-art on skin
lesion classification on the HAM10000 dataset[25] and ISIC-2017 dataset [2].
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2 Method

In this paper, five deep neural networks which are ResNet34, ResNet50 [6], Inception
ResNet v2[22], DenseNet201[8] and VGG16 [20], are implemented with soft attention
mechanism, to classify skin cancer images. ResNet34, ResNet50[6], Inception ResNet
v2, DenseNet201[8] and VGG16[20] are all state of the art feature extractors which are
trained on ImageNet dataset. The main components and architecture of the proposed
approach is described below:

2.1 Dataset

The experiment is performed on two datasets separately. The two datasets are as fol-
lows: HAM10000 dataset [25] and ISIC 2017 dataset [2].

The HAM10000 dataset [25] consists of 10015 dermatoscopic images of a size of
450×600. It consists of 7 diagnostic categories as follows: Melanoma(MEL), Melanocytic
Nevi(NV), Basal Cell Carcinoma(BCC), Actinic Keratosis, and Intra-Epithelial Carci-
noma(AKIEC), Benign Keratosis(BKL), Dermatofibroma(DF), Vascular lesions(VASC).
All the images are resized to 299 × 299 for Inception ResNet v2[22] architecture and
224× 224 for the other architectures.

The ISIC 2017 dataset consists of 2600 images. In the training dataset there are 2000
images of 3 catagories as follows: benign nevi, seborrheic keratosis, and melanoma.
The test dataset consist of 600 images. In this experiment we are training our model to
classify only benign nevi and seborrheic keratosis. All the images resized to 224× 224.

The data in both datasets is then cleaned to remove class imbalances. This is done by
the process of over-sampling and under-sampling of data so that there are equal number
of images per class. The images are then normalized by dividing each pixel with 255 to
keep the pixel values in the range 0 to 1.

2.2 Soft Attention

When it comes to skin lesion images, only a small percentage of pixels are relevant as
the rest of the image is filled with various irrelevant artifacts such as veins and hair. So,
to focus more on these relevant features of the image, soft attention is implemented.
Inspired by the work proposed by Xu et al [28], for image caption generation and the
work done by Shaikh et al [18], where they used attention mechanism on images for
handwriting verification, in this paper, soft attention is used to classify skin cancer.

In Figure [2], we can see that areas with higher attention are red in color. This is
because soft attention discredits irrelevant areas of the image by multiplying the cor-
responding feature maps with low weights. Thus the low attention areas have weights
closer to 0. With more focused information, the model performs better.

In the soft attention module as discussed in paper [18] and [23], the feature tensor
(t) which flows down the deep neural network is used as input.

fsa = γt((

K∑
k=1

softmax(Wk ∗ t))) (1)
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Fig. 1. (a). End to end architecture Of Inception ResNet v2[22] with Soft Attention Block. (b).
The schema for Soft Attention Block. (c). Soft Attention unit

This feature tensor t ∈ Rh×w×d is input to a 3D convolution layer[24] with weights
Wk ∈ Rh×w×d×K , where K is the number of 3D weights. The output of this convo-
lution is normalized using softmax function to generate K = 16 attention maps. As
shown in Figure 1(c), these attention maps are aggregated to produce a unified attention
map that acts as a weighting function α. This α is then multiplied with t to attentively
scale the salient feature values, which is further scaled by γ a learnable scalar. Because
various images require different γ values, γ is treated as a learnable parameter and not
hard-coded. This allows the network to determine how much it should focus on the at-
tention maps on its own. Finally, the attentively scaled features (fsa) are concatenated
with the original feature t in form of a residual branch. During training we initialize
γ from 0.01 so that the network can slowly learn to regulate the amount of attention
required by the network.

2.3 Model Setup

In this section, the detailed architecture of the models is discussed. For all experiments,
to train the networks, Adam optimizer[11] of 0.01 learning rate and 0.1 epsilon is used.
A batch normalization[10] layer is added after each layer in all the networks to introduce
some regularization. For the HAM10000 dataset [25], since there are 7 classes of skin
cancer, an output layer with 7 hidden units is implemented, followed by a softmax
activation unit. We employed a batch size of 16 during both training and testing. In
this paper, the model is evaluated using Precision = TP

TP+FP , Accuracy = TP+TN
T ,

Sensitivity = TP
TP+FN , Specificity = TN

TN+FP and AUC scores[9]. Here TN, TP,
FP, FN, T mean, True Negatives, True Positives, False Positives, False Negatives, Total
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Number respectively. All the experiments were executed on the Keras framework with
tensorflow version 2.4.0.

Inception ResNet v2: In Inception ResNet v2[22], the soft attention layer is added
to the Inception Resnet C block of the model where the feature size of the image is
8 × 8 as shown in Figure [1(a)]. In this case, the soft attention layer is followed by
a maxpool layer with a pool size of 2 × 2, which is then concatenated with the filter
concatenate layer of the inception block. The concatenate layer is then followed by a
relu activation unit. To regularize the output of the attention layer, the activation unit
is followed by a dropout layer[21] with dropout probability of 0.5 as shown in Fig-
ure [1(b)]. The network is trained for 150 epochs with early stopping patience of 30
epochs while monitoring the validation loss for a minimum delta of 0.001. The dropout
and early stopping regularization prevents the network from over-fitting to the training
dataset. The overall network is shown in Figure [1(a)]. The other architectures, such as
ResNet34, ResNet50 [6], DenseNet201[8] , and VGG16[20], and the process by which
the Soft Attention block was integrated with them, are described in the supplementary
document.

2.4 Loss Function

In this experiment, there are seven different classes of skin cancer. Hence , categorical
cross entropy loss (LCCE) is used to optimize the neural network.

LCCE = −
C∑
i=1

tilog(f(s)i) (2)

where
f(s)i =

esi∑C
j=1 e

sj
(3)

Here, as there are seven classes, C ∈ [0..6], where ti is the ground truth and si is the
CNN score for each class i in C. f(s)i is the softmax activation function applied to the
scores.

3 Results

3.1 Ablation Analysis

Table 1 lists, the performance of all the models in terms of precision, and AUC score
on HAM10000 dataset [25]. In this table (+SA) stands for models with soft attention.
IRv2 stands for Inception ResNet v2[22], [6]34 stands for ResNet34[6] and [6]50 stands
for ResNet50[6]. From the table, it can be observed that IRv2 when coupled with SA
(IRv2[22]+SA) shows significant improvements in results, with a precision and AUC
score of 93.7% and 98.4% respectively, which are also the highest scores amongst all
models. Furthermore, we can see that Soft Attention (SA) boosts the performance of
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Dis. Precision AUC #

[22] [22] +
SA [8] [8] +

SA [20] [20] +
SA [6]50 [6]50 +

SA [6]34 [6]34 +
SA [22] [22] +

SA [8] [8] +
SA [20] [20] +

SA [6]50 [6]50 +
SA [6]34 [6]34 +

SA

AKIEC 0.830 1.000 1.000 0.920 0.620 0.700 0.740 0.670 0.670 0.500 0.993 0.981 0.975 0.967 0.949 0.964 0.980 0.981 0.969 0.970 23
BCC 0.850 0.880 0.830 0.800 0.540 0.620 0.910 0.880 0.660 0.880 0.997 0.998 0.993 0.994 0.977 0.984 0.997 0.996 0.991 0.993 26
BKL 0.850 0.720 0.690 0.730 0.570 0.630 0.670 0.670 0.510 0.520 0.970 0.982 0.960 0.964 0.930 0.900 0.948 0.964 0.904 0.916 66
DF 0.670 1.000 0.500 1.000 0.250 0.500 0.800 1.000 0.400 0.330 0.973 0.982 0.851 0.921 0.847 0.809 0.973 0.971 0.925 0.949 6
MEL 0.700 0.670 0.540 0.530 0.500 0.430 0.520 0.730 0.420 0.540 0.965 0.974 0.963 0.976 0.925 0.956 0.961 0.973 0.910 0.953 34
NV 0.930 0.970 0.950 0.950 0.930 0.950 0.950 0.950 0.930 0.930 0.984 0.984 0.975 0.976 0.954 0.951 0.974 0.979 0.944 0.958 663
VASC 1.000 1.000 0.900 0.830 1.000 1.000 0.900 1.000 0.910 0.820 1.000 1.000 0.993 0.999 0.972 0.999 0.995 0.999 0.999 0.996 10

Avg 0.832 0.892 0.771 0.824 0.631 0.690 0.783 0.841 0.642 0.646 0.983 0.984 0.959 0.971 0.936 0.937 0.975 0.980 0.949 0.962 828

W. Avg 0.905 0.937 0.904 0.909 0.862 0.882 0.898 0.910 0.857 0.865 0.982 0.984 0.974 0.975 0.951 0.948 0.972 0.978 0.942 0.957 828

Table 1. Ablation results for choosing the best model on HAM10000 dataset [25]. [22] refers to
IRv2 architecture, [8] refers to DenseNet 201 architecture, [20] refers to VGG 16 architecture,
and [6] refers to ResNet architecture.

IRv2 by 3.2% in terms of precision as compared to the original IRv2 model. This
phenomenon is true for VGG16, ResNet34, ResNet50 and DenseNet201 as well. For
instance, Soft Attention (SA) boosts the precision of DenseNet201[8], ResNet34[6],
ResNet50[6], and VGG16[20] by 0.5%, 0.8%, 1.2% and 2% respectively. We see a
similar behaviour for the AUC scores when SA block is integrated in to the networks,
such as, the performance of ResNet50[6], and ResNet34[6] has grown by 0.6% and
1.5% respectively and the performance of DenseNet201[8], and VGG16[20] is on par
with the original models.

Although IRv2+SA performs the best in terms of weighted average(W.Avg), when
we look at it’s class wise performance, we can see that Soft Attention enhances the
efficiency of the original IRv2 while categorizing AKIEC, BCC, DF and NV by 17%,
3%, 33% and 4% respectively in terms of precision. Moreover, when comparing AUC
scores, the IRv2+SA performs better for BKL and MEL by 1.2% and 0.9% respectively,
while, for BCC, NV and VASC, IRv2+SA performs as good as original model.

We thus select IRv2 coupled with SA (IRv2+SA) for our experiments, also the SA
block consistently boosts the performance of it’s original counterpart, hence, we can
justify the integration of Soft Attention to the networks.

3.2 Quantitative Analysis

The proposed approach is compared with state-of-the-art models for skin cancer clas-
sification on the HAM10000 dataset [25] in Table 2(a). Our Soft Attention-based ap-
proach outperforms the baseline[16] by 4.7% in terms of precision. In terms of AUC
scores, our Soft Attention-based approach clearly outperforms them all by 0.5% to
4.3%.

We also tested the model with different train-test splits on the HAM10000 dataset
[25], we discovered that the model with 85% training data outperforms the model with
80% and 70% training data by 2.2% and 2.6% respectively, as shown in supplemen-
tary material’s Table 1. Hence we select 85/15% training/testing split for performing
our experiments. In Table 2(b), the performance of the proposed approach Inception
Resnet V2[22] (IRv25 × 5+SA and IRv212 × 12+SA) with soft attention is measured on
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Networks AUC Accuracy Sensitivity Specificivity

ResNet50 [6] 0.948 0.842 0.867 0.837
Model Avg AUC Precision Accuracy RAN50 [27] 0.942 0.862 0.878 0.859
Loss balancing and ensemble[5] 0.941 - 0.926 SEnet50 [7] 0.952 0.863 0.856 0.865
Single Model Deep Learning[29] 0.974 - 0.864 ARL-CNN50 [31] 0.958 0.868 0.878 0.867
Data classification augmentation[19] 0.975 - 0.853 (IRv212x12+SA)vs. N&M 0.922 0.890 0.956 0.589
Two path CNN model[14] - - 0.886 (IRv25x5+SA)vs. N&M 0.942 0.900 0.932 0.687
Various Deep CNN (Baseline) [16] 0.979 0.890 - (IRv212x12+SA)vs. N 0.935 0.898 0.945 0.711

IRv2+SA(Proposed Approach) 0.984 0.937 0.934 (IRv25x5+SA)vs. N 0.959 0.904 0.916 0.833

(a) (b)

Table 2. (a). Comparison with state-of-the-art-Model in terms of Average AUC score, Precision
and Accuracy on HAM10000 dataset [25]. (b). Comparison with state-of-the-art-Model in terms
of AUC, Accuracy, sensitivity and specificity score on ISIC-2017 dataset [2] for Seborrheic Ker-
atosis classification

Grad-cam       SA Map Grad-cam       SA Map  Grad-cam       SA Map 

 

      
 

      

Fig. 2. Comparison of GradCAM [17] heatmaps with our Soft Attention (SA) maps on
HAM10000 dataset [25]

ISIC-2017 dataset [2] on basis of AUC scores, Accuracy , Sensitivity and Specificity
with the state-of-the-art models. Here (IRv25 × 5+SA vs. N and IRv212 × 12+SA vs.
N) refers to classification of seborrheic keratosis with respect to only benign nevi, and
(IRv25 × 5+SA vs. N&M and IRv212 × 12+SA vs. N&M) refers to classification of seb-
orrheic keratosis with respect to both benign nevi and melanoma.

From Table 2(b), it can be observed that in IRv25 × 5+SA, and in IRv212 × 12+SA,
the attention layer was added when the feature map size is 5 × 5 and 12 × 12 respec-
tively. Out of the four models with soft attention, the model IRv25 × 5+SA vs. N outper-
forms IRv212 × 12+SA vs. N, IRv25 × 5+SA vs. N&M and IRv212 × 12+SA vs. N&M ,
in terms of AUC scores by 1.7% to 3.7% , Accuracy by 0.4% to 1.4%, and Specificity
by a percentage of 12.2% to 24.4% respectively whereas IRv212 × 12+SA vs. N&M
outperforms IRv25 × 5+SA vs. N, IRv25 × 5+SA vs. N&M and IRv212 × 12+SA vs. N
in terms of Sensitivity by 4.0%, 2.4% and 1.1% respectively. When IRv25 × 5+SA vs.
N is compared with the ARL-CNN50[31] (baseline model), it performs on par with it
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in terms of AUC score but our model outperforms it when it comes to accuracy and
Sensitivity by 3.6% and 3.8% respectively. But ARL-CNN50[31] takes the upper hand
when it comes to Specificity by 3.4%. Since sensitivity measures the proportion of cor-
rectly identified positives and specificity measures the proportion of correctly identified
negatives, we are prioritizing Sensitivity because classifying a person with cancer as
not having cancer is riskier than vice versa.

3.3 Qualitative Analysis

Fig.2 displays the Soft Attention heat maps from the IRv2+SA model. In the Fig.2, the
images on the bottom row are the input images from the HAM10000 dataset[25]. The
images in the middle row under the columns SA Map show the Soft Attention maps
superimposed on input images to show where the model is focusing and the images of
the top row are attention maps themselves.

In Fig.2, we show pairs of comparison between the Soft Attention maps with Grad-
CAM [17] heatmaps. In the first pair, the SA map focuses on the main part of the lesion
area whereas the Grad-cam heatmap is slightly shifted towards top left and is also spread
out on the uninfected area of skin. We have similar observations for the second and third
pairs as well. From this observation it is evident that the Soft Attention maps are focused
more on the relevant locations of the image compared to Grad-CAM[17] heatmaps.

4 Conclusion

In this paper, we present the implementation and utility of Soft Attention mechanism be-
ing applied while image encoding to tackle the problem of high-resolution skin cancer
image classification. The model outperformed the current state-of-the-art approaches
on the HAM10000 dataset [25] and the ISIC-2017 dataset [2]. This demonstrates the
Soft Attention based deep learning architecture’s potential and effectiveness in image
analysis as well as in skin cancer classification. The Soft Attention mechanism also
eliminates the need of using external mechanisms like GradCAM [17], and internally
provides the location of where the model focuses while categorizing a disease, while
also boosting the performance of the main network. Soft Attention has the added ad-
vantage of naturally dealing with image noise internally.

In future, we believe the salient regions proposed by Soft Attention can be used
as salient regions for downstream tasks like classification, Visual Q&A and captioning
as it will benefit datasets that don’t have any bounding box annotations. Furthermore,
this model can be also implemented in dermoscopy systems to assist dermatologists.
Lastly, this mechanism can easily be implemented to classify data from other medical
databases as well.
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