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Abstract. In this work, a kernel attention module is presented for the
task of EEG-based emotion classification with neural networks. The pro-
posed module utilizes a self-attention mechanism by performing a kernel
trick, demanding significantly fewer trainable parameters and computa-
tions than standard attention modules. The design also provides a scalar
for quantitatively examining the amount of attention assigned during
deep feature refinement, hence help better interpret a trained model. Us-
ing EEGNet as the backbone model, extensive experiments are conducted
on the SEED dataset to assess the module’s performance on within-
subject classification tasks compared to other SOTA attention modules.
Requiring only one extra parameter, the inserted module is shown to
boost the base model’s mean prediction accuracy up to more than 1%
across 15 subjects. A key component of the method is the interpretability
of solutions, which is addressed using several different techniques, and is
included throughout as part of the dependency analysis.
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1 Introduction

Correctly identifying human emotion using classification strategies has long been
a topic of interest in brain computer interfaces (BCI) and their applications. Ac-
cording to the review [17] on classification algorithms utilized in EEG studies,
there are five major categories of classifiers currently under investigation, which
are: i) conventional classifiers [20, 13–15], ii) matrix and tensor based classifiers
[5], iii) transfer learning based methods [2, 7], iv) deep learning algorithms and
advanced statistical approaches [4, 19], and v) multi-label classifiers [18, 3, 21].
While many classification approaches have been explored in the context of EEG
signal processing, the classification pipeline itself has still frequently involved
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extensive manual preprocessing and feature engineering, often requiring inter-
vention from domain experts as well as the experimental operators involved in
the acquisition of the EEG signals themselves.

The success of neural network tools has been shown to alleviate some of
limitations in the classical pipeline by providing, for example, faster predictions
and reducing the need to manually preprocess data. One problem that remains
however, is that the scale of learnable parameters in a classification network can
be too large relative to the input data size. That is, in contrast to areas such as
image classification, the availability of clean and open-sourced EEG data sets is
comparably quite small in size. As a consequence, basic research calls specifically
for data efficient and parameter efficient, as well as human interpretable models
in order to provide penetrating insight into human emotion classification given
relatively sparse data sampling.

2 Related Work

Below we briefly review some salient results in the literature relevant to the
present work.

Fig. 1. The basic self-
attention mechanism.

Self-Attention: Self-attention was originally in-
troduced in the field of natural language processing
(NLP) [1], where the self-attention mechanism op-
erates as a key component in transformer modules.
These standard self-attention designs rely on MLPs,
instead of the more conventionally used convolutional
layers, to generate an attention matrix. Adapting the
concept of self-attention to computer vision has been

remarkably successful, and has demonstrated impressive performance to date on
a variety of different tasks, e.g. [6, 16]. As a consequence, through self-attention
approaches, the field of image classification— long dominated by an assortment
of solutions utilizing convolution neural networks—has discovered a promising
new tool for (potentially) broad application.

Alternative Attention Approaches: In addition to self-attention, there
exists many other types of attention modules in the field of computer vision.
Two prominent examples of these are the Squeeze-and-Excitation (SE) network
[10] and the Convolutional Block Attention Module (CBAM) [22], where the SE
network won the ImageNet2017 championship, while CBAM sequentially infers
attention maps along both channel and spatial dimensions for adaptive feature
refinement. These methods, and others, are indicative of the increased contempo-
rary importance attention-style approaches are having within computer vision.

EEGNet: EEGNet was proposed in [12] for a compact network design aimed
at finding better generalizations across different BCI paradigms. Using depth-
wise/separable convolution layers, the EEGNet network contains considerably
fewer trainable parameters than models constructed with regular convolutional
layers, while still showing commensurate performance. EEGNet is also equipped
with a convolutional layer of kernel size equal to the total number of EEG chan-
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nels, enabling the ability to investigate spatial patterns learned during training
in order to elucidate underlying electrophysical principles. Because of both the
effectiveness and parsimonious nature of the EEGNet design, we adopt it as the
backbone network for comparing and interpreting different attention modules.

SEED: The SEED dataset [23] includes multiple physiological signals that
evaluate self-reported emotional responses, classified into Positive, Neutral, and
Negative reactions taken from 15 participants, and is one of the standard datasets
for benchmarking EEG signal classification strategies. The data was collected
with 62 EEG channels using the 10–20 international standard.

Our work: In this paper we consider a self-attention mechanism for boosting
the backbone model’s performance in a parameter efficient way and for providing
better interpretation. However, at the outset, it is worth noting that several po-
tential difficulties arise when conceptualizing the incorporation of a self-attention
mechanism into the EEGNet framework. First, as discussed in [6], transformers
tend to be quite data hungry models, failing to outperform regular convolution-
based networks when the dataset’s size is not large enough. In the area of emotion
classification using EEG signals, this data-thirst requirement can become pro-
hibitive. One of the reasons for this “data hungry” aspect of transformers is due to
the MLP layers generally involved in the attention mechanism. These dense lay-
ers, not surprisingly, tend to contain many more parameters than convolutional
layers that comprise popular emotion classification frameworks. Consequently,
a difficulty arises when self-attention is applied directly to frameworks such as
EEGNet, since the resulting hybrid frameworks tend to substantially undermine
the primary advantage of the underlying base models; for example, EEGNet
would no longer be a lightweight and compact model, but instead become a
data hungry model focusing entirely on accuracy over pragmatic utility.

Thus, the primary goal of the present work is to find a way to incorporate
the self-attention mechanism into EEGNet in a way that can still preserve EEG-
Net’s pragmatic utility by maximizing the parameter efficiency in the design of
the attention module. The solution presented in this paper is called a Kernel
Attention network Module (KAM), and can be described as:

1. Utilizing a kernel function to produce the proper attention matrix instead
of relying on MLP layers; thus reducing the number of both parameters
and computations required. Moreover, benefiting from the one parameter
design, specific techniques are then able to be employed for more effective
interpretability techniques as well.

2. With the proposed module inserted along with only one additional pa-
rameter, the predictive performance of the baseline model—in our case,
EEGNet—can be boosted up to more than 3% for some subjects on within-
subject classifications and more than 1% overall on mean performance.

3 Kernel Attention Module

Figure 1 gives a simple illustration of how the basic self-attention mechanism
works when applied on some feature x. First, the feature x is mapped to three
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different features of the same size via q = ϕq(x), k = ϕk(x), and v = ϕv(x). The
mappings ϕj for j ∈ {q, k, v} are achieved using MLP blocks. Next, an attention
matrix is formed by computing qkT which will then be used as a prefactor
on v to produce the attention output. Computationally, this procedure can be
summarized as: x← [ϕq(x)ϕk(x)

T ]ϕv(x).

Fig. 2. EEGNet with KAM in-
serted. Some important hyperpa-
rameters, kernel shapes and tensor
sizes are also shown.

In the case where x has large feature
dimension n, the attention is applied on
segments of x in parallel with the result-
ing feature pieces subsequently concatenated
afterwards—a mechanism referred to as multi-
head self-attention. For more details on the
underlying algorithms we refer the reader to
[6]. Using the above basic self-attention for-
mat, KAM is constructed by replacing the
inner product form ϕq(x)ϕk(x)

T with a ker-
nel matrix MK(x; θ) subject to some param-
eter θ. For example, a Gaussian type ker-
nel function can be used to generate M ij

K =
exp(−αd(xi, xj)

2), where d(·, ·) denotes some
distance metric, xi is the ith row or column
of feature block x depending on whether MK

is multiplied to x by left or right, θ = α is
the learnable parameter during training. In
the KAM design, ϕv can be simply dropped
to reduce the number of total parameters. Fi-
nally, a skip connection is included in the the
KAM design that offers several potential ben-
efits. On one hand, an additional skip can
help better backpropagation of gradients to
the blocks in front of the KAM. On the other,
it provides an easy interface to quantitatively
measure how much attention is actually being
applied, requiring only an examination on the
values of θ. For example, when α→ +∞ then MK(x; θ)→ I, meaning no cross
attention among features is applied. However, if α → 0, then MK(x; θ) → J
which is an attention matrix whose off-diagonal entries Jij = 1, i ̸= j, meaning
deep features now equally contribute to others for refinement during training.
The above procedure leads to our Kernel Attention Module (KAM) design as
shown in Figure 2, where its symbolic form can be summarized as:

x← x+MK(x; θ)x = (I +MK(x; θ))x. (1)

The proposed KAM mechanism can also be easily applied with multiple
heads. We further note that in the implementation in Section 4, an extended
form is used for M ij

K = exp(−αd(xi, xj)
2), where α ∈ (a,∞). If the lower bound

is set to a = 0, the case can be readily interpreted as α = 1/σ2 where the
parameter can be understood as a kind of "standard deviation". Setting a less
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than zero allows off-diagonal entries in MK to have values greater than one, in
which case a should be close to zero, i.e. a ≈ −ϵ for ϵ small, to prevent numerical
blow-up during training from poor matrix conditioning.

4 Experiments

In this research, we focused on model’s performance on subject dependent classi-
fication tasks. In the spirit of [23] the data set was divided into non-overlapping
epochs, each lasting one second, yielding ∼3300 epochs per trial, per subject,
and ∼1060 epochs per labelled emotion. However, in contrast to [23], and most
other studies where the training and testing data are manually split and models
evaluated in a single pass, we adopt a cross-validation (CV) approach to improve
evaluation robustness.

In the following benchmark using EEGNet with KAM, the data from each
subject is split, taking 1/6 for validation during training. Five-fold cross valida-
tion (5-CV) is then performed on the remaining 5/6 of the data. Theses ratios
are chosen to make the validation and test set roughly the same size during cross
validation. For any model test, initial weights are set to the same values across
each of the five folds. The network is trained for each fold over a maximum of
80 epochs, and the best model is selected at the epoch with the best validation
accuracy. All experiments are trained with the same Adam optimizer configu-
ration of an initial learning rate of 10−2 and a decay rate of 0.75, which only
activates when no accuracy improvement is seen on the validation set in the past
10 epochs. A total of 5 × 15 = 45 training runs are conducted for each model
compared in our benchmark. The code used for models’ training and evaluation
will be made available at https://github.com/dykuang/BCI-Attention

Fig. 3. Overall mean prediction perfor-
mance across 15 subjects.

Benchmark: For benchmarking
we compared five models: a) EEGNet,
b) the basic QKV type attention from
Figure 1, c) SE attention, d) CBAM
attention, and e) KAM(a = −0.1). All
implementations herein are inserted
at the same location shown in Figure
2. Note that the basic QKV attention
module does not perform well here,
which is likely due to it, as mentioned
in [6], being data thirsty and SEED
not being a large enough dataset to
quench. It is also worth mentioning
here that the version of KAM with α’s
lower bound a = 0 gives mean accu-

racy of 91.74% ± 3.02% which is slightly worse than the case of a = −0.1. This
suggests that the extension of the lower bound to a negative value can poten-
tially help during deep feature refinement. We also observe in our experiments
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that the training procedure for some subjects will push α slightly below zero for
minimizing the loss function (see Figure 5).

Table 1. Mean accuracy reported from different models.

Models EEGNet +QKV +SE +CBAM +KAM(a = −0.1)
Parameters 3851 4940 3933 4033 3852

Acc(%) 90.34 ± 3.69 86.81 ±4.19 91.20 ±3.42 90.40 ±3.97 91.89 ±2.76

Channel Attention: The inserted KAM module can potentially change the
kernel weight originally designed in EEGNet during the model’s decision process.
Particularly, kernel weights in the first depthwise convolution layer (see Figure 2)
were treated as a representation for relative attention across different channels3
in [12]. They can be affected when different attention modules are inserted. As
the depthwise convolution applies one kernel to each of the eight channels, there
are eight kernels associated to the architecture in Fig. 2. For clarity here, to
illustrate the effect of these kernels on the network, we only examine the kernel
applied on the first feature channel.

1.0

1.0

0.0

0.0

-1.0

A) EEGNet B) +QKV C) +SE D)+CBAM E) +KAM(a=-0.1)

T7

Fig. 4. Kernel weights mapped onto scalp maps. The first row shows the normalized
mean. The second row shows the normalized standard deviation from the 5-CV.

To visualize the different spatial attention patterns discovered represented by
the selected kernel weights of different models, we present scalp maps in Fig. 4.
These maps are generated by training the models under 5-CV for subject S01,
where mean and standard deviations are shown. It can be clearly seen overall
that different modules can result in different channel attention patterns. While
it may be difficult to immediately associate the mean value mappings to infor-
mative clinical interpretations, the spatial magnitude of the standard deviation
does provide a way to measure different models’ confidence in assigning kernel
weights across different regions. For example, one thing to observe here is that

3 These are kernel weights in the first depthwise convolutional layer. The shape is of(1,
62) and can be directly associated with the 62 EEG sensor locations on scalp.
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all models visualized high mean attention values around the T7 region with rel-
atively low uncertainty (represented by the std value). This observation seems
to support some studies reporting correlations between emotional deficiency and
memory development with specific temporal lobe function, such as in the diathe-
sis of schizophrenia, e.g. [8], and in types of memory enhancement in forms of
dementia, e.g. [11]. As an alternative research direction, how to enforce one’s
prior knowledge on task related scalp patterns so that the posterior learned pat-
terns are robust to inserted attention modules is also important for building a
better human interpretable model.

Dependency on α: For better interpret the effect of module parameter α
from KAM in trained models, we organised this section. Figure 5(A) shows the
distribution over learned α during 5-CV for each subject. Among these, only
experiments with data from subject S02 and S13 yield instances where α < 0,
while all other trainings find α ≥ 0. However, per subject speaking, the change
in the lower bound on α does have a noticeable impact. For example, in the data
from subject S05, S06, and S13 the learned α values cluster at locations close
to zero, but we observed from our experiments that this small deviation from
zero results in noticeable accuracy differences. This may because of the fact that
small α will correspond to the case with large σ, i.e. further away from zero
attention as explained above in Section 3.

Fig. 5. A: Distribution of learned α value during the 5CV with EEGNet+KAM across
the 15 subjects. B: Change of accuracy with varying value of α while freezing other
parameters in the selected model (marked as red in first column i.e. subject S01 of A).

The one-parameter KAM design also makes it easy to analyze prediction
accuracy as a function of the module parameter α. As an example, we choose
the model trained from the first fold (marked with a red dot in Fig. 5(A))
for subject S01 and gather data from three trials each with a different emotion
label for the dependency analysis. By varying α values in KAM while keeping
other model parameters frozen, we can examine how α conditionally effects the
prediction. In 5(B), it is interesting to see that the learned value (black vertical
line) in KAM happens at a location where the overall accuracy line first rises
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to stabilize in this case. It is also interesting to observe that crossover between
accuracy lines for “neutral" and “negative" happens at the same location of
learned α. 4.

This dependency can also be examined via the distribution of ∂fi(x)
∂α |x for

varying α, where x is the input and fi(x) is the output of the corresponding
neuron (before activation) from the last dense layer for label i ∈ {1, 2, 3}, i.e.
positive, neutral, and negative emotion labels respectively. The result is gath-
ered in Fig. 6(A-C) computed with the same data mentioned in the previous
paragraph. Of note, the partial dependencies appear to show very similar pat-
terns. That is, the variance in each is a decreasing function for α ∈ [0, 0.1]. This
can be explained by the fact that α is packaged inside an exponential form that
maintains its character through differentiation. Finally, Fig. 6(D) shows a close
look at the histogram of how these distributions differ at the learned α = 0.0406
from the model’s selection during training.

Fig. 6. A-C: Distribution at different α values corresponding to label “Positive", “Neu-
tral" and “Negative". The mean is linked by dashed line. D: Distribution at learned
α = 0.0406 for different emotion labels.

Prediction Transition Curve: In this section, we would like to explore
how different models react when the input sample to be predicted is gradually
transformed to another sample via some morphing operation g. In other words,
we try to examine and interpret how different models react under a particularly
selected “attack" g. Let {x0, x1, x2} denote 3 samples with labels 0, 1 and 2,

4 This might be an interesting coincidence since we also had other cases in our exper-
iments where they do not meet exactly.
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and p⃗i = {pji} = F (xi) with j = 0, 1, 2 denoting model F ’s confidence (here
using a softmax score of the last dense layer) assigning input xi for label j.
Then clearly by construction

∑
j p

j
i = 1 for any i. Further let gji (u), u ∈ [0, 1]

denote an morphing operation between samples parameterized by u such that
xi = gji (0) ∗ xi and xj = gji (1) ∗ xi. The symbol ∗ here stands for certain
abstract action operation. In trinary classification tasks, as u increases, F [gji (u)]
will draw a curve in the hyperplane x + y + z = 1 inside the triangle formed
by [1, 0, 0], [0, 1, 0], [0, 0, 1]. By checking these curves (we call them prediction
transition curves, PTC ), one can have an idea that how the trained model F
reacts with respect to the morphing operation g on selected samples. The idea
can be generated to higher dimensional cases with class categories n > 3, but it
then becomes harder to visualize these cases as simple curves being embedded
in higher dimensional simplices. This prediction transition curve provides a way
for visualizing and interpreting model’s predicting behavior under “attack" g for
given inputs.

Fig. 7. The prediction transition curves from the three models on the same selected
samples. From left to right: EEGNet, EEGNet+SE, EEGNet+KAM.

As a demonstration, we select three samples each with a different label, and
EEGNet, EEGNet+SE, EEGNet+KAM all predict correctly on them. For sim-
plicity, we choose the straightforward linear interpolation between samples for
g, i.e. gji (u) ∗ xi = (1 − u)xi + uxj . Notice that this definition of g is sym-
metric in terms of gji (u) ∗ xi = gij(1 − u) ∗ xj . So morphing from xi to xj and
xj from xi end up with the sample path (regardless of the direction). Other
types of morphing operations can also be used depending on one’s prior on the
(known or inferred) underlying relationships between samples. The prediction
transition curves obtained from morphing with g are summarized in Figure 7.
It can be seen that all three compared models have almost straight PTCs for
the connection of "Negative- Neutral" and "Negative-Positive", meaning that
when one input sample is slowly morphing to the other, the model transits its
confidence between the two labels almost linearly while leaving the third label
almost untouched. Curves linking "Neutral-Positive" are all curved to the cen-
ter at different extents, suggesting that models are in some sense "hesitating"
to assign "Negative" for intermediate samples generated by morphing between
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"Neutral" and "Positive". This example is consistent with the observations in
Figure 6 D) and provides a different angle suggesting that the trained models
find it more difficult to separate "Positive" from "Neutral" emotions than sep-
arating "Negative" from "Positive" or "Neutral" from "Negative" emotions for
the subject data under examination. An interesting followup question is whether
this observation bears clinical significance as well, something which undoubtedly
deserves consideration.

5 Conclusion

In this work, we present a kernel attention module that can be inserted into a
network for deep feature refinement. Using EEGNet as the backbone model, the
performance of KAM are benchmarked against several SOTA attention modules
under cross validation with SEED dataset. With only one additional parameter,
the idea behind KAM has demonstrated good potential for developing parameter
efficient models that can simultaneously help human interpretation on trained
models. Many follow-up studies are possible in this context, including investigat-
ing the effects of different kernels (other than Gaussian) alongside more exhaus-
tive dependency analyses. Additionally, examining different training strategies,
such as the masked-autoencoder discussed in [9], might also be beneficial.
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