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Motivation
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What is interpretability?

The degree to which a human can understand 
the cause of a decision (Miller, 2019)[1].

Why interpretable models? 

- Learning tools
- Improve user trust
- Discover harmful biases
- Policy/legal considerations

Attribution maps: highlight relevant regions 

Why did the model predict this?

Limitations of attribution maps
- Coarse-grained explanation
- Not inherently interpretable
- Poor performance on medical data
- Mostly developed for CNN-based models

~ Post-hoc explanation
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Transformers for Image Analysis

Vision transformers
- Revolutionized computer vision
- Competitive alternative to CNNs
- Self attention long-range dependencies

Hybrid CNN-Transformers 

- Balance computational cost
- CNNs + Transformer module
- Locality + global dependencies

Explaining hybrid CNN-transformers
- Post-hoc for CNNs: GradCAM [3], LRP [4], ….

- Specialized techniques tailored for ViTs
- Attention maps [5], Rollout [6], …

(SA)

- Computational intensive [2] 

- Interpretability remains challenging [2]
- Post-hoc vs self-explainable methods

- Prototypes-based for ViTs [7]
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Contribution: Self-explainable CNN-Transformer

W-SA: Window Self Attention  

427.09.2025 DRSA: Ilyas et al., MICCAI (2024);   Sparse Activations: Djoumessi et al., MIDL (2023)



Application: Retinal disease detection 

About DR and AMD
- Microvascular abnormalities

- DR: Microeurysms, Hard Exudates
- AMD: Drusen

- Can lead to vision loss 
- Well-defined grading systems

Managing DR and AMD 

- AI-based retinal image analysis  
- Predict disease stage from lesions
- Early diagnosis improves treatment
- Progression: regular follow-ups

Figure reproduced from Powal et al. (2018)
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Classification performance 

Dataset: 
Kaggle DR detection (45,923; 5 classes), AREDS AMD (34,079; 6 classes)

Parameter (M), Memory (Mb): Time (s) 
AREDS AMD. ResNet: 1e-04, BagNet: 7e-06
Kaggle DR.    ResNet: 2e-4,  BagNet: 3e-05Sparsity
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Qualitative heatmap evaluation
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Quantitative Heatmap Evaluation

IDRiD dataset: 81 images
- Lesion annotations 
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Interpretability for Multi-class DR Detection
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Conclusion

- Effectively combine prior work (DRSA, CvT, sparse explanation)
- Hybrid fully convolutional interpretable CNN-Transformer models 
- CNNs: BagNet & ResNet
- Task: retinal disease detection (AMD, DR)
- Qualitative & quantitative metrics to access the interpretability

- Clinical user validation 

Summary

Future work

- Generalizability: extend to other modalities
- Improve model performance on data regime (late-stage DR)

- Aggregation techniques & extensive hyperparameters search
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