

A hybrid Fully Convolutional CNN-Transformer Model for Inherently Interpretable Disease Detection from Retinal Images

Kerol Djoumessi, Samuel Ofosu Mensah, Philipp Berens

Hertie Institute for AI in Brain Health, University of Tübingen, Germany

Motivation

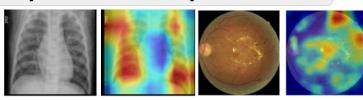
What is interpretability?

The degree to which a human can understand the cause of a decision (Miller, 2019)[1].

Why interpretable models?

- Learning tools
- Improve user trust
- Discover harmful biases
- Policy/legal considerations

Why did the model predict this?



Attribution maps: highlight relevant regions ~ *Post-hoc explanation*

Limitations of attribution maps

- Coarse-grained explanation
- Not inherently interpretable
- Poor performance on medical data
- Mostly developed for CNN-based models

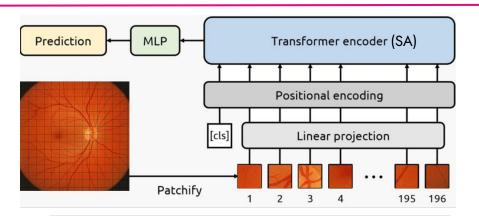
Transformers for Image Analysis

Vision transformers

- Revolutionized computer vision
- Competitive alternative to CNNs
- Self attention long-range dependencies
- Computational intensive [2]

Hybrid CNN-Transformers

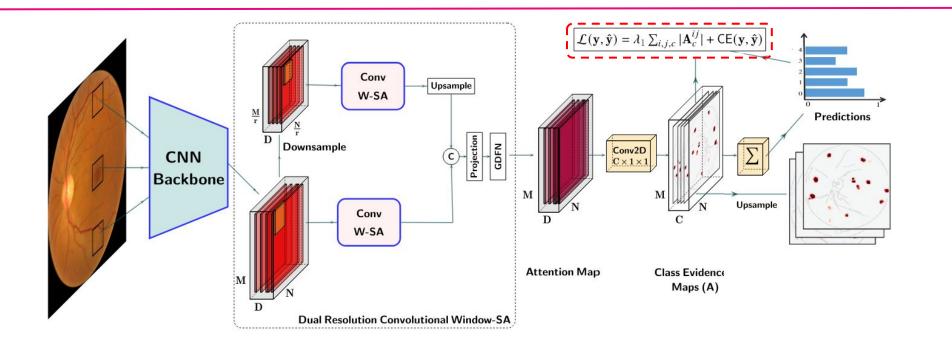
- Balance computational cost
- CNNs + Transformer module
- Locality + global dependencies
- Interpretability remains challenging [2]



Explaining hybrid CNN-transformers

- Post-hoc for CNNs: GradCAM [3], LRP [4],
- Specialized techniques tailored for ViTs
 - Attention maps [5], Rollout [6], ...
- Post-hoc vs <u>self-explainable methods</u>
 - Prototypes-based for ViTs [7]

Contribution: Self-explainable CNN-Transformer (1)

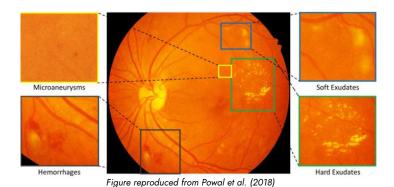


W-SA: Window Self Attention

Application: Retinal disease detection

About DR and AMD

- Microvascular abnormalities
 - DR: Microeurysms, Hard Exudates
 - AMD: Drusen
- Can lead to vision loss
- Well-defined grading systems



Managing DR and AMD

- Al-based retinal image analysis
- Predict disease stage from lesions
- Early diagnosis improves treatment
- Progression: regular follow-ups

Classification performance

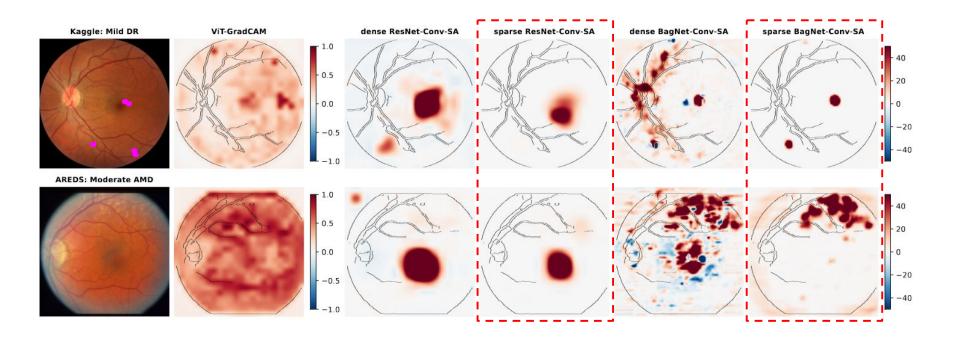
Dataset:

Kaggle DR detection (45,923; 5 classes), AREDS AMD (34,079; 6 classes)

	AREDS AMD		Kaggle DR		Computational Cost		
	Acc.	κ	Acc.	κ	Par.	Mem.	${f Time}$
ViT	$.76 \pm .03$	$.90 \pm .02$	$.81 \pm .02$	$.71 \pm .04$	86,094	341	09.5 ± 0.1
Swin	$.78 \pm 0.2$	$.92\pm.02$	$.85 \pm .02$	$.81 \pm .03$	86,883	358	15.5 ± 1.1
ResNet	$.78 \pm .03$	$.89 \pm .02$	$.85 \pm .02$	$.81 \pm .03$	23,518	101	04.2 ± 0.5
BagNet	$.75 \pm .03$	$.88 \pm .02$	$.86 \pm .02$	$.83 \pm .03$	16,271	193	15.1 ± 0.1
ResNet-FCL-SA	$.78 \pm .03$	$.90 \pm .02$	$.86 \pm .02$	$.82 \pm .03$	69,732	281	06.2 ± 0.2
BagNet-FCL-SA	$.77 \pm .03$	$.89 \pm .02$	$.85 \pm .02$	$.83 \pm .03$	62,501	306	27.3 ± 0.2
ResNet-Conv-SA	$.78 \pm .03$	$.91 \pm .02$	$.85 \pm .02$	$.83 \pm .03$	69,735	285	06.3 ± 0.6
BagNet-Conv-SA	$.77 \pm .03$	$.90 \pm .02$	$.87\pm.02$	$.84\pm.02$	62,913	310	27.3 ± 0.3
sResNet-Conv-SA	$.79\pm.02$	$.90 \pm .02$	$.85 \pm .02$	$.80 \pm .03$	69,735	285	06.3 ± 0.6
sBagNet-Conv-SA	0.77 ± 0.03	$.91 \pm .02$	$.85 \pm .02 $	$.81 \pm .03$	62,913	310	27.3 ± 0.3

AREDS AMD. ResNet: 1e-04, BagNet: 7e-06
Sparsity
Kagale DR ResNet: 2e-4 BagNet: 3e-05

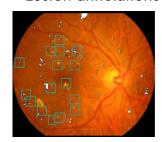
Qualitative heatmap evaluation

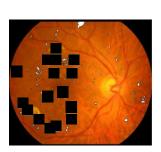


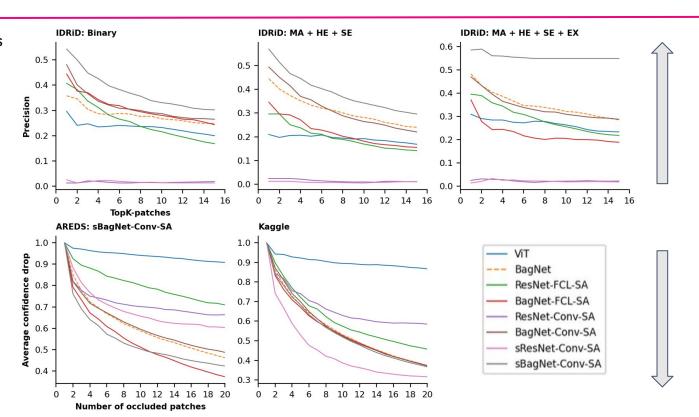
Quantitative Heatmap Evaluation

IDRiD dataset: 81 images

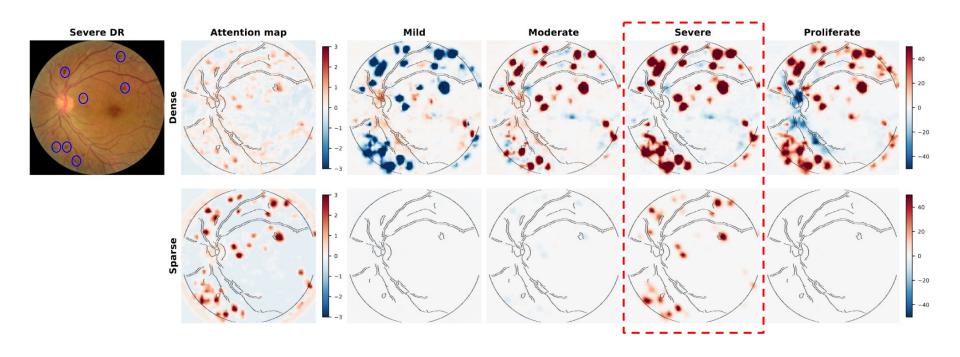
- Lesion annotations







Interpretability for Multi-class DR Detection



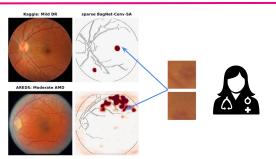
Conclusion

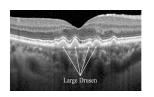
Summary

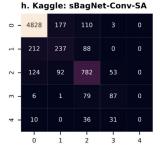
- Effectively combine prior work (DRSA, CvT, sparse explanation)
- Hybrid fully convolutional interpretable CNN-Transformer models
- CNNs: BagNet & ResNet
- Task: retinal disease detection (AMD, DR)
- Qualitative & quantitative metrics to access the interpretability

Future work

- Clinical user validation
- Generalizability: extend to other modalities
- Improve model performance on data regime (late-stage DR)
- Aggregation techniques & extensive hyperparameters search

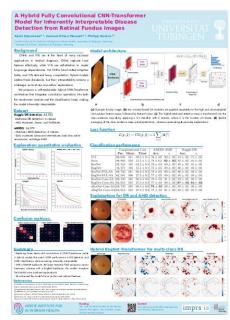






Acknowledgments

Thank you for your attention!



References

- [1] Miller Tim, Explanation in artificial intelligence: Insights from the social sciences (2019)
- [2] Kim et al., Systematic review of hybrid vision transformer architectures for radiological image analysis (2025)
- [3] Selvaraju et al., GradCAM: Visual explanations from deep networks via gradient-based localization (2017)
- [4] Bach et al., On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation (2015)
- [5] Dosovitskiy et al., An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (2020)
- [6] Abnar et al., Rollout: Quantifying attention flow in transformers (2020)
- [7] Ashkan et al., Protoformer: Embedding Prototypes for Transformers (2022)
- [8] Ilyas et al., A Hybrid CNN-Transformer Feature Pyramid Network for Granular Abdominal Aortic Calcification Detection from DXA Images (2024)
- [9] Wu et al., CvT: Introducing convolutions to vision transformers (2021)
- [10] Djoumessi et al., Sparse Activations for Interpretable Disease Grading (2023)
- [11] Djoumessi et al., Soft-CAM: Making black box models self-explainable for high-stakes decisions (2025)