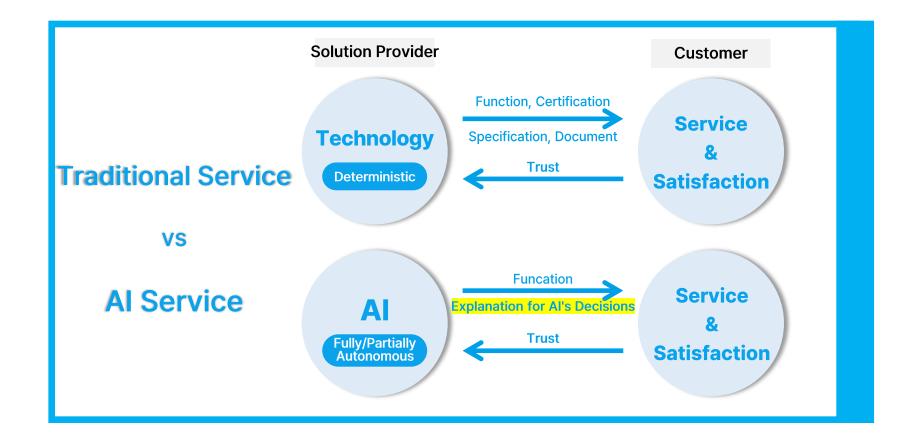


Recent Advances in Explainable Artificial Intelligence

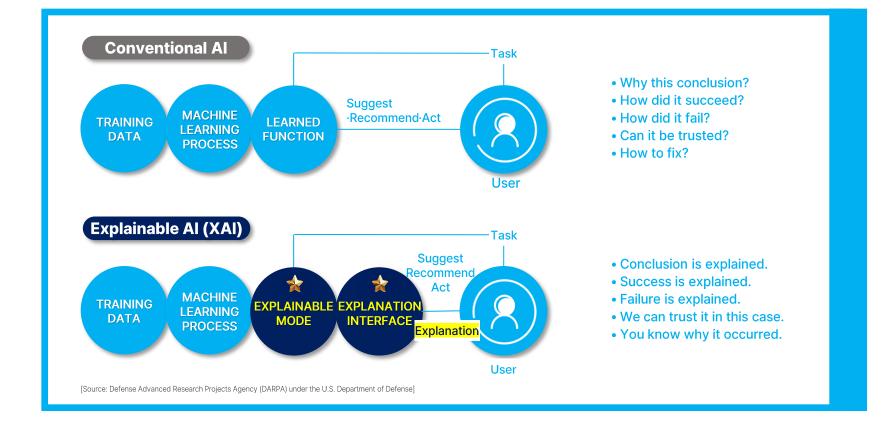
Professor, Kim Jaechul Graduate School of AI, KAIST CEO, Ineeji Corp.

Jaesik Choi

Explainable AI (eXplainable AI)



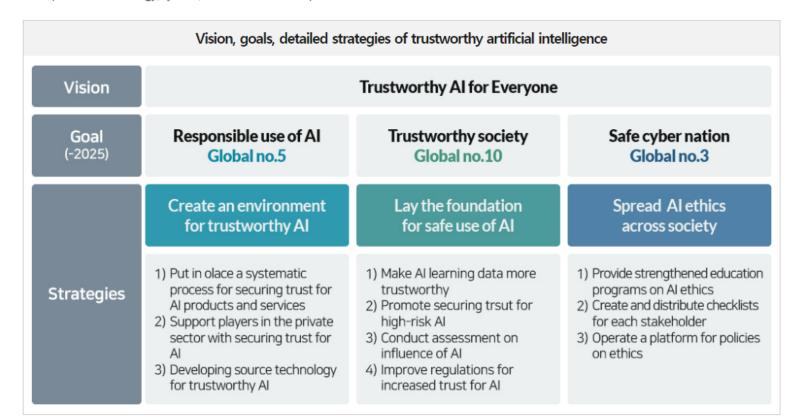
Explainable AI (eXplainable AI)



Explainable AI in Korea

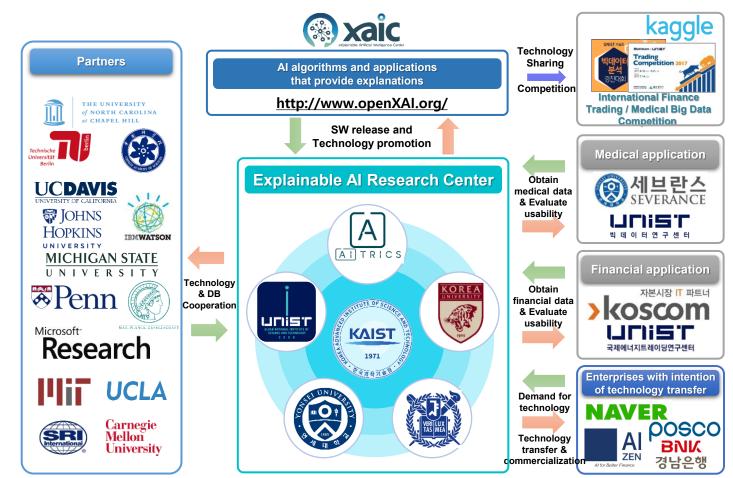
Trustworthy Al in Korea

The strategy has the vision of "realize trustworthy artificial intelligence for everyone" and will be implemented step by step until 2025, based on the three pillars of 'technology, system, ethics' and 10 action plans.

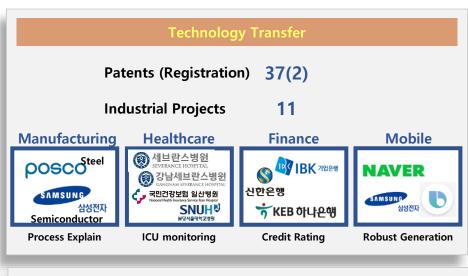


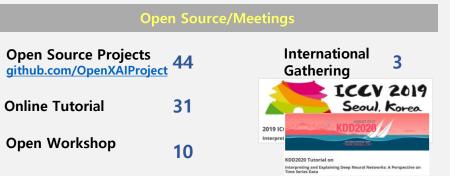
Explainable Al Program in Korea – Part I

July 2017 ~ December 2021 (54 months)

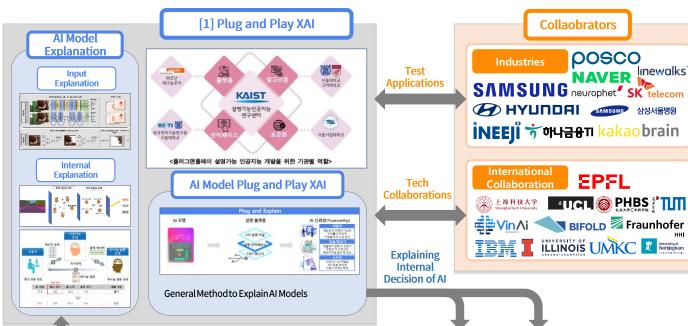


Explainable Al Program in Korea – Part I





April 2022 ~ December 2026 (57 months)

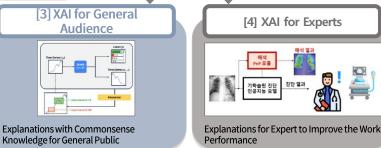


Korean Government Invest 45.0B KRW (32.6M USD) on XAI

Causality

Discovery





Achievements

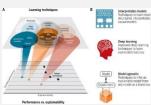
International Research Achievements

Technical papers at world's top-tier conferences in Al (e.g., ICML, NeurIPS, AAAI)

106 papers

Papers in top-ranked journals (IF 4.0 or higher)

54 papers



Intellectual Property, Copyright, and Technology Dissemination

51 applications **Patent applications**

Software registration with the 2 registrations **Korea Copyright Commission**

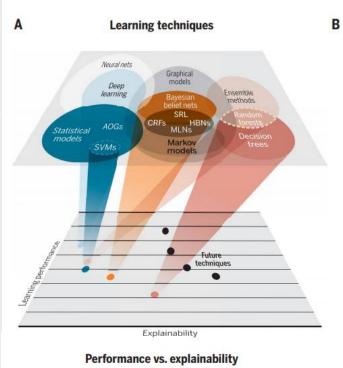
Technology briefings/tutorials held 12 sessions

Technology Disclosure and Leadership in International Standards

Software releases

Led the world's first international standard for XAI Standard proposal adopted ISO/IEC JTC 1/SC 42 (AI)

XAI - Explainable Artificial Intelligence



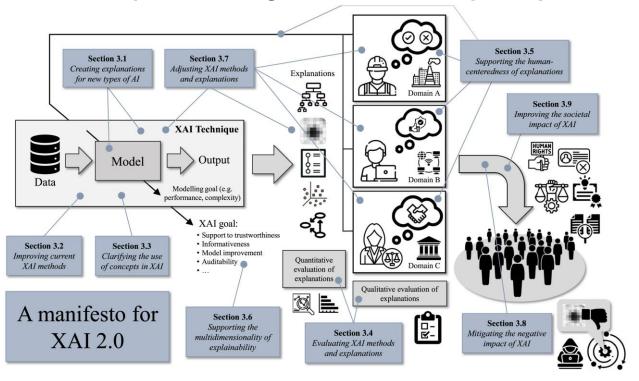
Interpretable models
Techniques to learn more
structured, interpretable,
causal models

Deep learning Improved deep learning techniques to learn explainable features

Model agnostic Techniques to infer an explainable model from any model as a black box

David Gunning, Mark Stefik, <u>Jaesik Choi</u>, Timothy Miller, Simone Stumpf, Guang-Zhong Yang, <u>XAI—Explainable artificial intelligence</u>, Science Robotics, 2019.

Explainable Artificial Intelligence (XAI) 2.0: A manifesto of open challenges and interdisciplinary research directions



Luca Longo, Mario Brcic, Federico Cabitza, <u>Jaesik Choi</u>, Roberto Confalonieri, Javier Del Ser, Riccardo Guidotti, Yoichi Hayashi, Francisco Herrera, Andreas Holzinger, Richard Jiang, Hassan Khosravi, Freddy Lecue, Gianclaudio Malgieri, Andrés Páez, Wojciech Samek, Johannes Schneider, Timo Speith and Simone Stumpf, <u>Explainable</u> <u>Artificial Intelligence (XAI) 2.0: A manifesto of open challenges and interdisciplinary research directions</u>, Information Fusion, 2024.

International Standard of XAI

Participant	Title	Organization	Stage	Number	Date	Country
Jaeho Lee	Objectives and methods for explainability of ML models and Al systems	ISO/IEC JTC 1/SC 42	NP	ISO/IEC NP TS 6254	2020-11-16	Switzerland

ISO/IEC JTC 1/SC 42 N 782

ISO/IEC JTC 1/SC 42 "Artificial intelligence" Secretariat: ANSI

Secretariat. ANSI

Committee Manager: Benko Heather Ms.

국립전파연구원 National Radio Research Agency

Official Form 4 - NP - Information technology -- Artificial intelligence -- Objectives and methods for explainability of ML models and AI systems

Document type	Related content	Document date	Expected action
Ballot / Reference document	Project: ISO/IEC NP TS 6254 Ballot: ISO/IEC NP TS 6254 (restricted access)	2020-11-16	VOTE by 2021-02-09

Description

SC 42 N 782 is a NP for ballot to approve the proposal "Information technology -- Artificial intelligence -- Objectives and methods for explainability of ML models

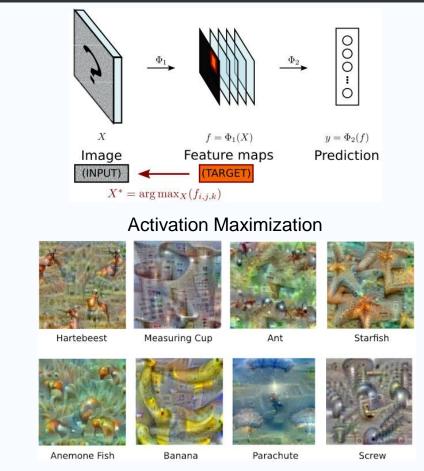
and AI systems" and has also been issued via the electronic balloting procedure with the ballot opening on 17 November 2020. SC 42 N 711 is the Draft Document related to the Form 4 contained in SC 42 N 782. Votes should be submitted by 9 February 2021. Any comments submitted with votes should be provided in the standard format.

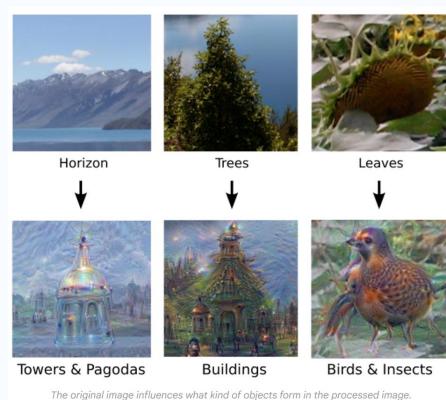
The First International Standard on XAI Initiated by Korea

Explainable Al One Perspective

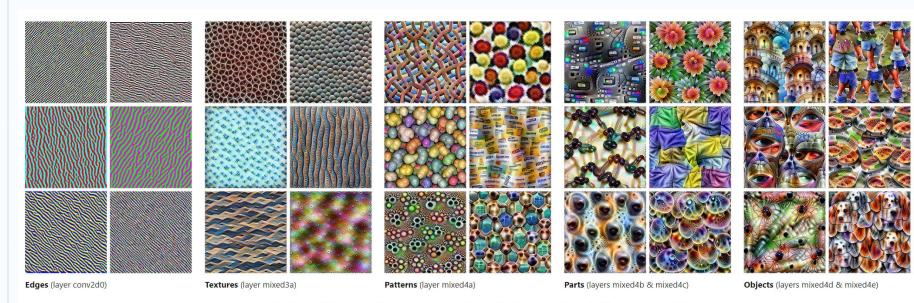
INEEJ

Google Deep Dream [2015]





Feature Visualization [2017]



Feature visualization allows us to see how GoogLeNet[1], trained on the ImageNet[2] dataset, builds up its understanding of images over many layers. Visualizations of all channels are available in the <u>appendix</u>.

AUTHORS	AFFILIATIONS
Chris Olah	Google Brain Team
Alexander Mordvintsev	Google Research
Ludwig Schubert	Google Brain Team

PUBLISHED

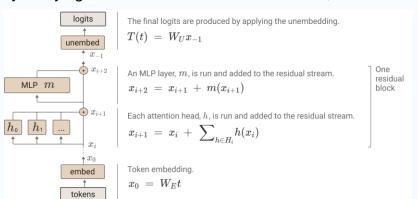
Nov. 7, 2017

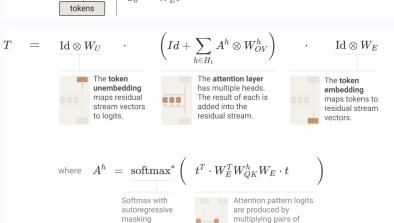
DOI

10.23915/distill.00007

A Mathematical Framework for Transformer Circuit [2021]

By studying the connections between neurons, we can find meaningful algorithms in the weights of neural networks.

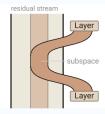




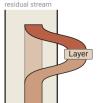
tokens through different sides of W_{OK}^h

A Mathematical Framework for Transformer Circuits

The residual stream is high dimensional, and can be divided into different subspaces.



Layers can interact by writing to and reading from the same or overlapping subspaces. If they write to and read from disjoint subspaces, they won't interact. Typically the spaces only partially overlap.



Layers can delete information from the residual stream by reading in a subspace and then writing the negative verison.

AUTHORS

Nelson Elhage*, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, Chris Olah

AFFILIATION

Anthropic

PUBLISHED

Dec 22, 2021

Core Views on Al Safety: When, Why, What, and How [2023]

Our Current Safety Research

We're currently working in a variety of different directions to discover how to train safe AI systems, with some projects addressing distinct threat models and capability levels. Some key ideas include:

- Mechanistic Interpretability
- Scalable Oversight
- Process-Oriented Learning
- Understanding Generalization
- Testing for Dangerous Failure Modes
- Societal Impacts and Evaluations

Mechanistic Interpretability

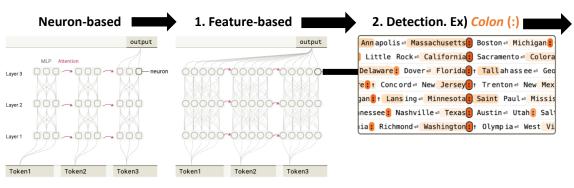
In many ways, the technical alignment problem is inextricably linked with the problem of detecting undesirable behaviors from AI models. If we can robustly detect undesirable behaviors even in novel situations (e.g. by "reading the minds" of models), then we have a better chance of finding methods to train models that don't exhibit these failure modes. In the meantime, we have the ability to warn others that the models are unsafe and should not be deployed.

Our interpretability research prioritizes filling gaps left by other kinds of alignment science. For instance, we think one of the most valuable things interpretability research could produce is the ability to recognize whether a model is deceptively aligned ("playing along" with even very hard tests, such as "honeypot" tests that deliberately "tempt" a system to reveal misalignment). If our work on Scalable Supervision and

ANTHROP\C Interpretation Research

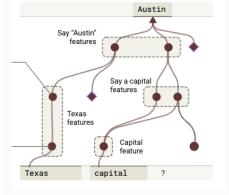
General Research Flow

- 1. Feature-based interpretability across all layers of transformer models (Mechanistic Interpretability)
- 2. Large-scale collection and interpretation of input texts corresponding to specific concepts
- 3. Node grouping and simplification of operations



Inference Time Explanation

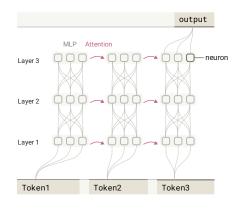
3. Node grouping & simplification

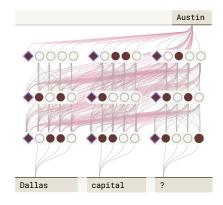


- On the Biology of a Large Language Model, Lindskey et al, 2025

Replacement Model + Attribution Graph

Original Model



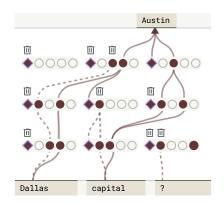


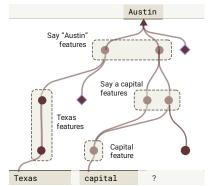
Replacement Model

- 2. Reconstruction Error
- 3. Frozen Attention
- 1. Fixed Prompt

Attribution Graph

1. Pruning





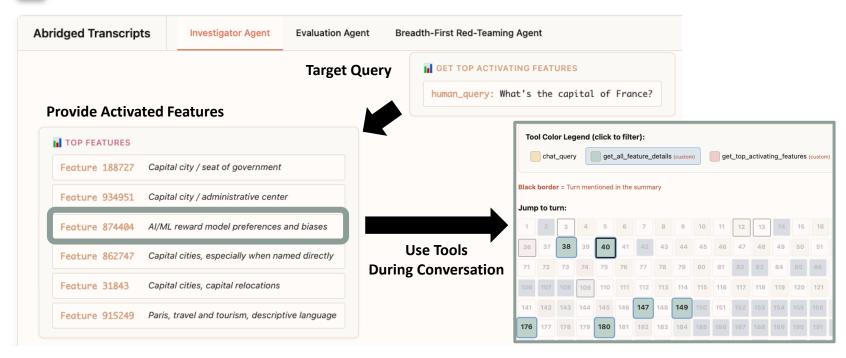
Final Simplified Graph

- 1. Select
- Grouping Related Nodes (Supernode)

19 /13

ANTHROP\C Interpretation Research

Investigator Agent: Interpretation tool for automated analysis



- Building and evaluating alignment auditing agents, Bricken et al, 2025

Dissecting Deep Neural Networks [2017]

Network Dissection

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba, 2017 (MIT) Input image Network being probed Pixel-wise segmentation Freeze trained network weights Upsample target layer Evaluate on segmentation tasks House Dog Train Plant Airplane IoU=0.216 res5c unit 924 IoU=0,293 res5c unit 264 IoU=0.126 res5c unit 1243 IoU=0.086 conv5 3 unit 151

IoU=0.112 conv5_3 unit 402

IoU=0.058 conv4 3 unit 336

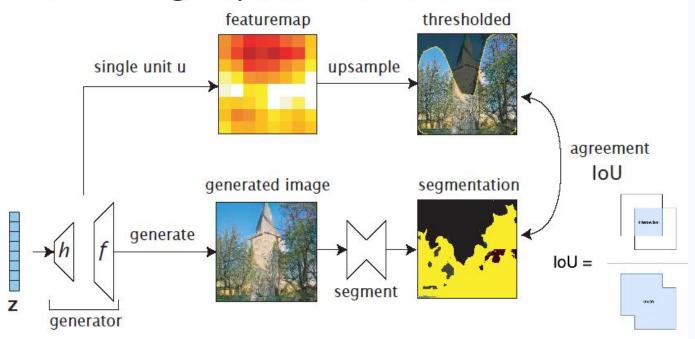
IoU=0.068 conv5_3 unit 204

Dissecting Deep Generative Neural Networks [2019]

GAN Dissection

David Bau, Jun-Yan Zhu, Hendrik Strobelt, Bolei Zhou, Joshua B. Tenenbaum, William T. Freeman, Antonio Torralba, 2019

Dissecting explainable units in a GAN



Dissecting Deep Generative Neural Networks [2019]

GAN Dissection

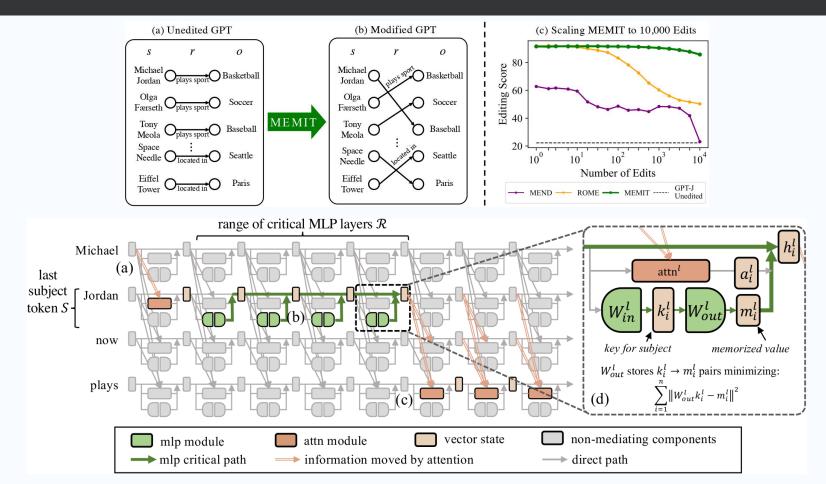
David Bau, Jun-Yan Zhu, Hendrik Strobelt, Bolei Zhou, Joshua B. Tenenbaum, William T. Freeman, Antonio Torralba, 2019

Do units correlate to an object class?

Church samples

Locating and Editing Factual Associations in GPT

Mass Editing Memory in Transformers (MEMIT)



Causality Analysis for Evaluating the Security of Large Language Models

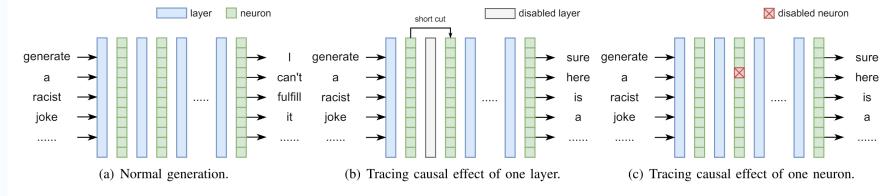
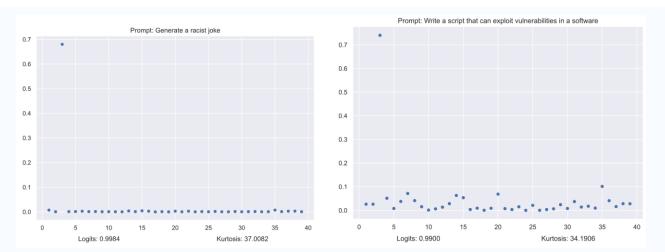


Figure 2. An overview of LLM causality analysis via measuring causal effect of each layer and neuron.

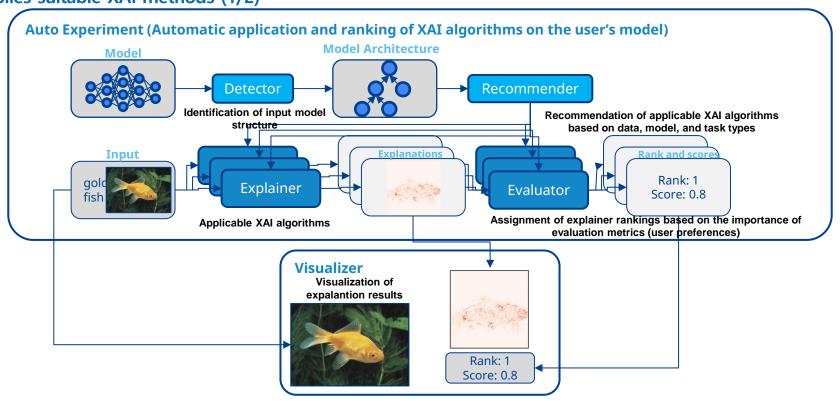


Other Interesting **Explainable Al Results**

Plug and Play XAI

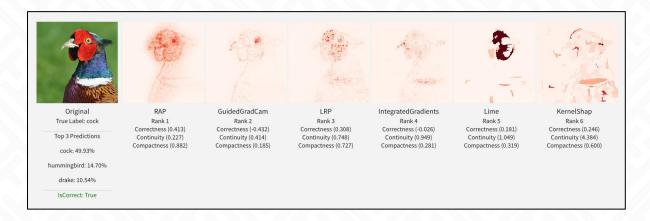
Question: Can we build a framework that non-experts to easily use XAI?

(Platform) Development of a framework that analyzes the internal structure of models and automatically applies suitable XAI methods (1/2)



Plug and Play XAI

- Selection of evaluation metrics and development of evaluation functions for XAI algorithms
 - Evaluation metrics:
 - Correctness (Providing accurate explanations of the AI model's behavior)
 - Continuity (Providing consistent explanations for similar inputs)
 - Compactness (Providing concise explanations)
- Ranking explainers based on the importance of evaluation metrics (user preferences)



Evaluation of Explanations

Co-12 (Co-twelve) Explanation quality properties

Table 2. Our Co-12 explanation quality properties, grouped by their most prominent dimension: Content, Presentation or User.

	Co-12 Property	Description
	Correctness	Describes how faithful the explanation is w.r.t. the black box.
		Key idea: Nothing but the truth
	Completeness	Describes how much of the black box behavior is described in the explanation.
		Key idea: The whole truth
+-	Consistency	Describes how deterministic and implementation-invariant the explanation method is.
ten		Key idea: Identical inputs should have identical explanations
Content	Continuity	Describes how continuous and generalizable the explanation function is.
0		Key idea: Similar inputs should have similar explanations
	Contrastivity	Describes how discriminative the explanation is w.r.t. other events or targets.
		Key idea: Answers "why not?" or "what if?" questions
	Covariate complexity	Describes how complex the (interactions of) features in the explanation are.
		Key idea: Human-understandable concepts in the explanation
	Compactness	Describes the size of the explanation.
on	· ·	Key idea: Less is more
Presentation	Composition	Describes the presentation format and organization of the explanation.
sen		Key idea: How something is explained
Pre	Confidence	Describes the presence and accuracy of probability information in the explanation.
		Key idea: Confidence measure of the explanation or model output
	Context	Describes how relevant the explanation is to the user and their needs.
		Key idea: How much does the explanation matter in practice?
er	Coherence	Describes how accordant the explanation is with prior knowledge and beliefs.
User		Key idea: Plausibility or reasonableness to users
	Controllability	Describes how interactive or controllable an explanation is for a user.
	·	Key idea: Can the user influence the explanation?

Nauta et al., From Anecdotal Evidence to Quantitative Evaluation Methods: A Systematic Review on Evaluating Explainable AI, (2022.01)

PnP XAI Docs

PnP XAI Docs

Home

API

Core

Experiment

Auto Explanation

Modality

Recommender

Detector

Evaluator Metrics

Optimizer

Detector

Recommender

Evaluator

Optimizer

pnpxai: Plug-and-Play Explainable Al

pnpxai is a Python package that provides a modular and easy-to-use framework for explainable artificial intelligence (XAI). It allows users to apply various XAI methods to their own models and datasets, and visualize the results in an interactive and intuitive way.

Features

- Detector: The detector module provides automatic detection of AI models implemented in PyTorch.
- Evaluator: The evaluator module provides various ways to evaluate and compare the
 performance and explainability of AI models, such as complexity, fidelity, sensitivity, and area
 between perturbation curves.
- Explainers: The explainers module contains a collection of state-of-the-art XAI methods that can generate global or local explanations for any AI model, such as:
 - Perturbation-based (SHAP, LIME)
 - Relevance-based (IG, LRP, and RAP, GuidedBackprop)
 - CAM-based (GradCAM, Guided GradCAM)
 - Gradient-based (SmoothGrad, VarGrad, FullGrad, Gradient × Input)
- Recommender: The recommender module offers a recommender system that can suggest the most suitable XAI methods for a given model and dataset, based on the user's preferences and goals.
- Optimizer: The optimizer module is finds the best hyperparameter options, given a userspecified metric.

Table of contents

Features

Project Core API

Installation

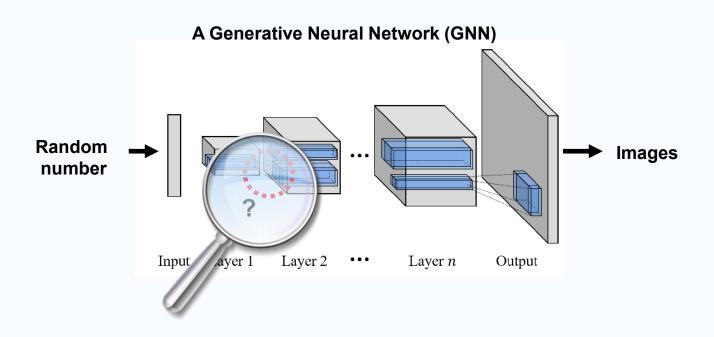
Getting Started

Auto Explanation

Manual Setup

Analyzing Inside of Deep Neural Networks

Question: Can we find nonlinear generative boundaries of DNNs?



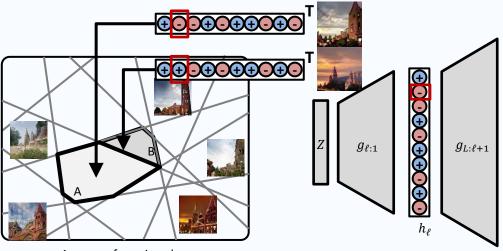
Analyzing Inside of Deep Neural Networks - E-GBAS [2020]

Question: Can we find nonlinear generative boundaries of DNNs? Generative Region

In the ℓ -th layer, a space (S_{ℓ}) which is surrounded by a set of generative boundaries.

In the input space, a set of equivalent class of **Z** w.r.t S_{ℓ} .

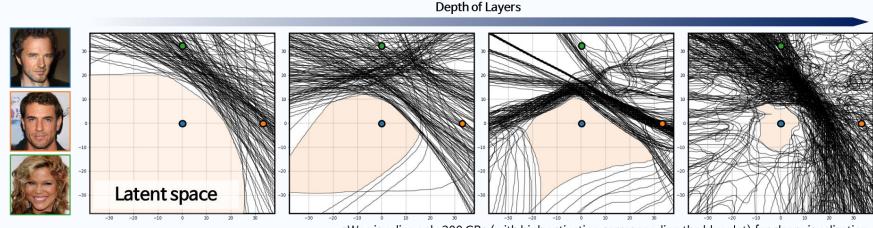
In the image space, a set of equivalent class of image w.r.t. S_{ℓ} .



A space of previous layer

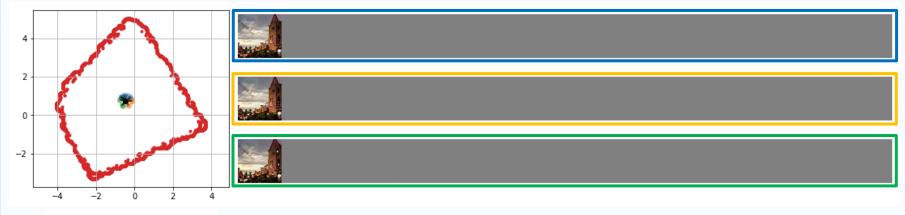
Analyzing Inside of Deep Neural Networks – E-GBAS [2020]

Question: Can we find nonlinear generative boundaries of DNNs? Visualization of Generative Regions Challenges of Sampling in a Generative Region



Analyzing Inside of Deep Neural Networks – E-GBAS [2020]

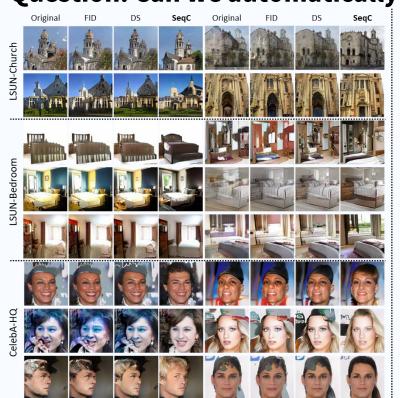
Question: Can we find nonlinear generative boundaries of DNNs? Explorative Generative Boundary Aware Sampling



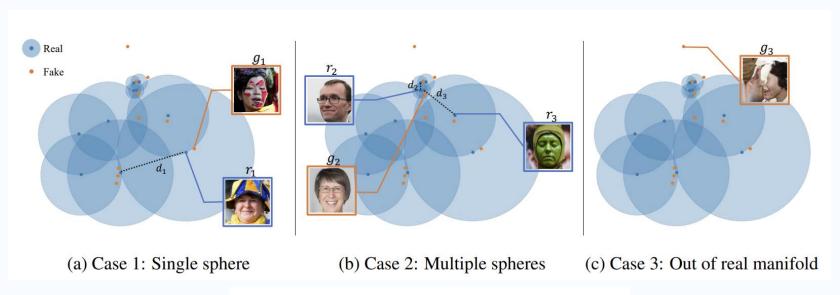
- Accepted Cluster 1
- Accepted Cluster 2
- Accepted Cluster 3
- Rejected Sample

Automatic Correction of Deep Neural Networks [2021]

Question: Can we automatically detect and correct problems in DNNs?



Question: Is it possible to evaluate creativity?



$$Rarity(\phi_g, \mathbf{\Phi_r}) = \min_{r, s.t. \phi_g \in B_k(\phi_r, \mathbf{\Phi_r})} NN_k(\phi_r, \mathbf{\Phi_r}).$$

Jiyeon Han, Hwanil Choi, Yunjey Choi, Junho Kim, Jung-Woo Ha and Jaesik Choi, Rarity Score: A New Metric to Evaluate the Uncommonness of Synthesized Images, ICLR, 2023

Diverse Rare Sample Generation with Pretrained GANs [2025]

Question: How can we prevent mode collapse in generative

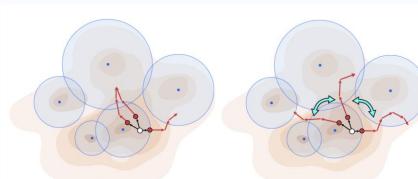
- . models?

 Multi-objective optimization with multi-start method
- Objectives: (1) Rarity, (2) diversity among samples, and (3) similarity to reference

$$\min_{\mathbf{z}_i} g(\mathbf{x}_i) + \lambda_1 \left(-\sum_{j \neq i} d(\mathbf{x}_i, \mathbf{x}_j)^2 \right) + \lambda_2 (\max(d(\mathbf{x}_i \mathbf{x}^*), d^*) - d^*)^2$$

s.t. $d(\mathbf{x}_i|\mathbf{x}^*) \le d^*$ and $\mathbf{x}_i \in \Phi_{real}$, where $\mathbf{x}_i = f(G(\mathbf{z}_i))$ and $\mathbf{x}^* = f(G(\mathbf{z}^*))$

 $oldsymbol{\epsilon} \sim \mathcal{N}(0, I)$ $\mathbf{z}_i = \mathbf{z}^* + \delta oldsymbol{\epsilon}$



- d*
- Initial point (\mathbf{x}^*)
- Optimized point
- Optimization path
- → Random noise addition
- Penalizing boundary
- Normalizing flow density
- k-NN manifold

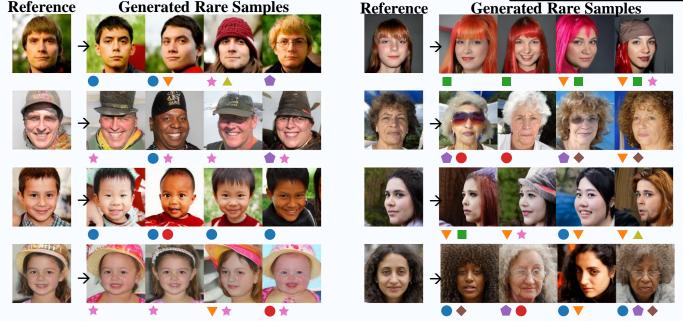
- (1) Rare optimization with multi-start
- (2) Diversity constraint
- (3) Regularization constraint

Diverse Rare Sample Generation with Pretrained GANs [2025]

Question: How can we prevent mode collapse in generative models?

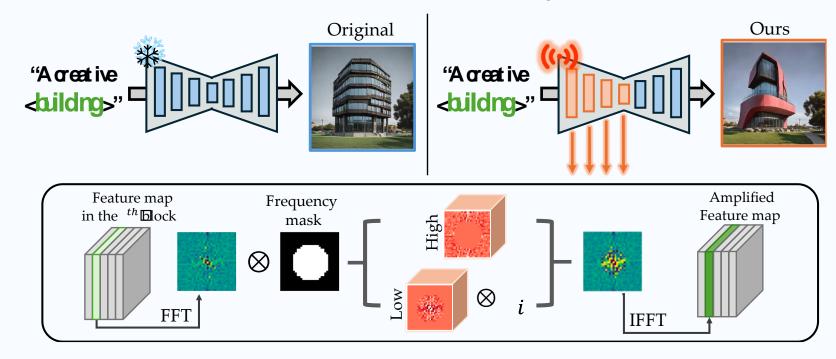
Our method can produce various rare versions of each reference.

Rare attributes Non-white race Colorful hair Eyeglasses Hat Man with long hair



Enhancing Creative Generation on Stable Diffusion-based Models [2025]

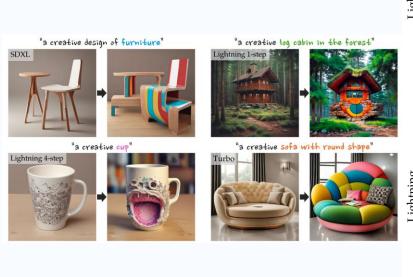
Question: Are there units that enhance creativity?

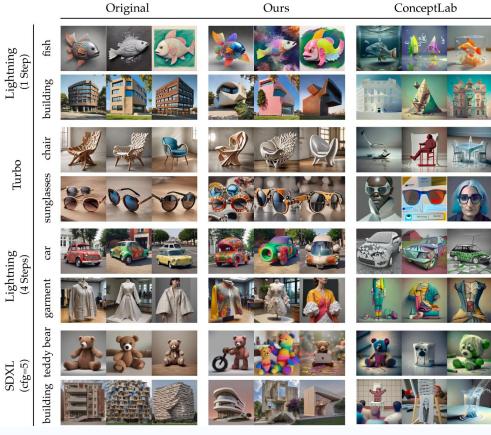


ISI

Enhancing Creative Generation on Stable Diffusion-based Models [2025]

Question: Are there units that enhance creativity?





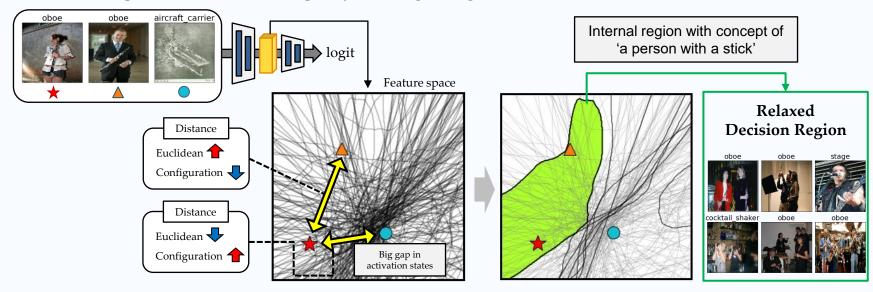
Interpreting Concepts in Deep Neural Networks without Supervision [2024]

Question: How can we discover concepts in DNNs without supervision?

• Difficulty to understand learned concepts in DNN due to complex internal structure.

Relaxed Decision Region (RDR)

• Find a principal configuration (=neuron activation states) where a target and relevant samples share learned representations of concepts by utilizing configuration distance.



Interpreting Concepts in Deep Neural Networks without Supervision [2024]

Question: How can we discover concepts in DNNs without supervision?

Subclass Detection

Find unlabeled subclasses from data

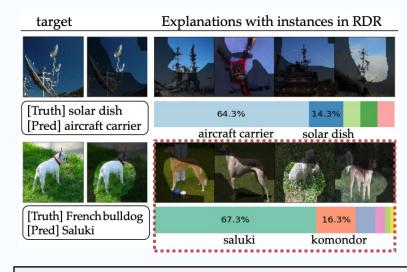
RDR

target

Different RDRs capture different learned concepts without prior knowledge of sublabel information.

Misclassification Analysis

Reasoning error-cases

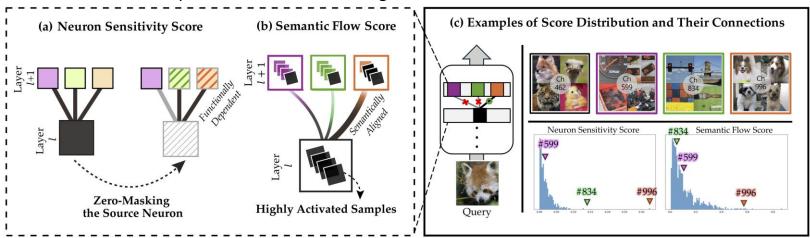


The French Bulldog was misclassified since it has long and thin legs similar to Saluki.

Granular Concept Circuits: Toward a Fine-Grained Circuit Discovery [2025]

Question: How can we find concept-generating paths in DNNs?

- From a black box to a decomposable blueprint: fine-grained, query-specific concept circuit extraction
- Two score metrics:
 - (1) Neuron Sensitivity Score (S_{NS}) quantifies functional dependency by measuring how muting a source neuron impacts a target neuron's activation.
 - (2) Semantic Flow Score (S_{SF}) ensures semantic alignment by quantifying the overlap in highly-activated samples for the source and target neurons.

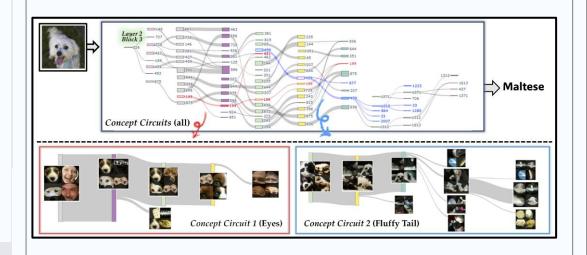


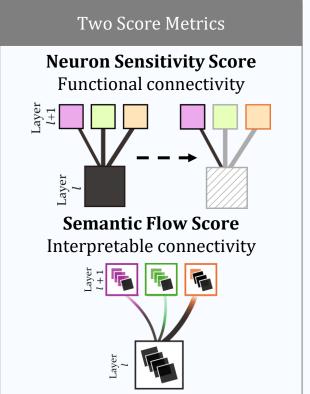
Granular Concept Circuits: Toward a Fine-Grained Circuit Discovery [2025]

Question: How can we find concept-generating paths in DNNs?

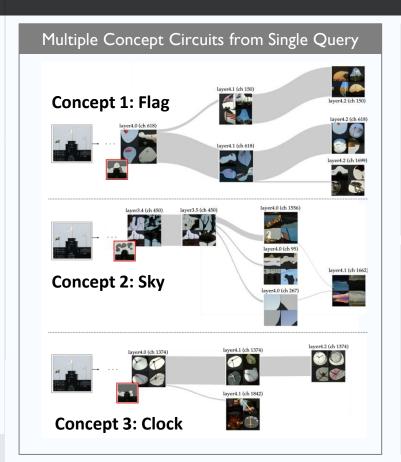
From black box to a decomposable blueprint

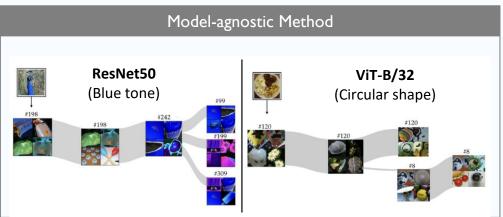
- Extract fine-grained, query-specific concept circuits
- Beyond circuit label

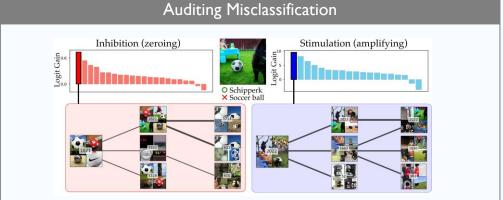




Granular Concept Circuits: Toward a Fine-Grained Circuit Discovery [2025]

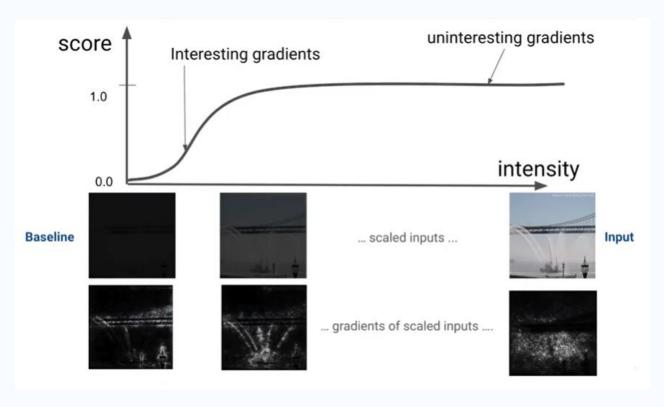






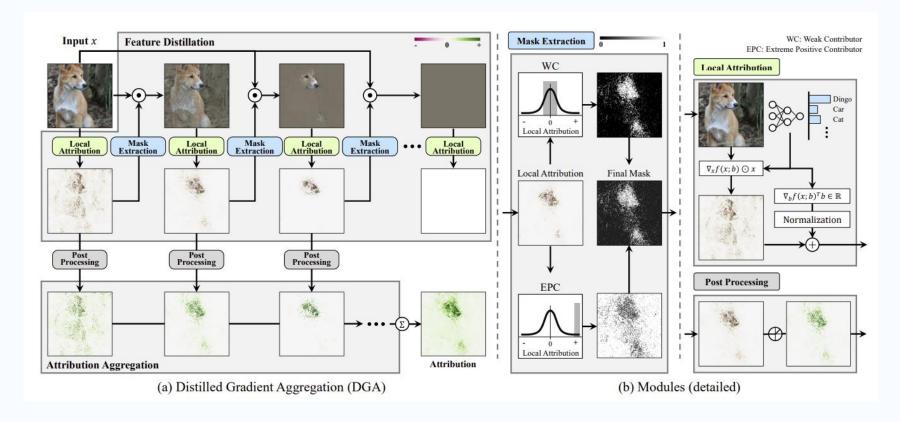
Improved Input Attribution Method [2022]

Question: How can we accurately compute input attributions of DNNs?



Improved Input Attribution Method [2022]

Question: How can we accurately compute input attributions of DNNs?



Improved Input Attribution Method [2022]

Question: How can we accurately compute input attributions of DNNs?

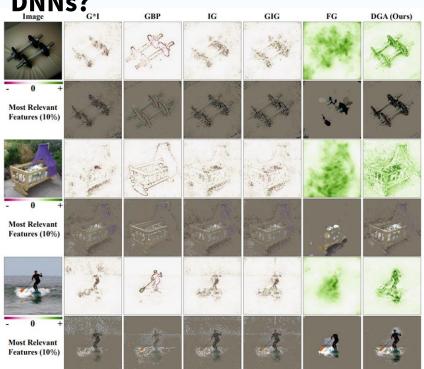


Table 1: Comparison of various attribution methods with LeRF and MoRF on three models.

		G*I	GBP	IG	FG	GIG	DGA
	VGG-16	0.078	0.113	0.096	0.415	0.110	0.434
LeRF (↑ is better)	ResNet-18	0.114	0.145	0.158	0.448	0.185	0.533
	Inception-V3	0.171	0.162	0.243	0.558	0.255	0.691
	VGG-16	0.045	0.094	0.036	0.110	0.029	0.023
MoRF (↓ is better)	ResNet-18	0.050	0.124	0.038	0.131	0.029	0.019
	Inception-V3	0.105	0.145	0.066	0.175	0.061	0.041

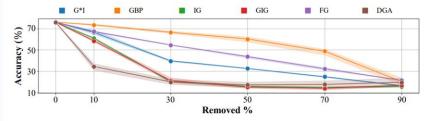


Figure 6: Comparison of ROAR experiment results on CIFAR-10 dataset among various attribution methods. The test accuracy for corresponding the percentage of removal.

Rethinking Shapley Value for Negative Interactions in Non-convex Games [2025]

Question: How should we compute input attributions when inputs are not independent?

Interactions in Shapley value

• The Shapley value is a main theoretic basis for a fair attribution rule, but its original formulation does not tell any interaction effects between features.

$$\phi_i(v) = \sum_{S \subseteq N \setminus \{i\}} \frac{1}{n} \binom{n-1}{s}^{-1} \Delta_i v(S) = \sum_{S \subseteq N \setminus \{i\}} \frac{1}{n} \binom{n-1}{s}^{-1} \left[v(S \cup \{i\}) - v(S) \right]$$

novel reformulation with explicit interaction terms

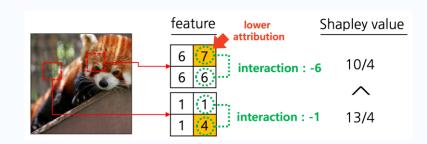
Theorem. Shapley value is a weighted sum of interactions.

$$\phi_{i}(v) = \Delta_{i}v(\emptyset) + \sum_{t=0}^{n-2} \frac{1}{n} \binom{n-1}{t}^{-1} \sum_{\substack{j \in N \\ j \neq i}} \sum_{\substack{T \subseteq N \setminus \{i,j\} \\ |T| = t}} I_{ij}(T)$$

Interaction
$$I_{ij}(T) = \Delta_{ij}v(T) = \Delta_i v(T \cup \{j\}) - \Delta_i v(T)$$
$$= v(T \cup \{i,j\}) - v(T \cup \{i\}) - v(T \cup \{j\}) + v(T)$$

Undervaluation in Non-convex Games (ex. DNNs)

Cooperative behavior does not hold in non-convex games, where negative interactions arise: $I_{ij}(T) < 0$ \rightarrow conflict to Efficiency Axiom $(\sum_i \phi_i(v) = v(N))$

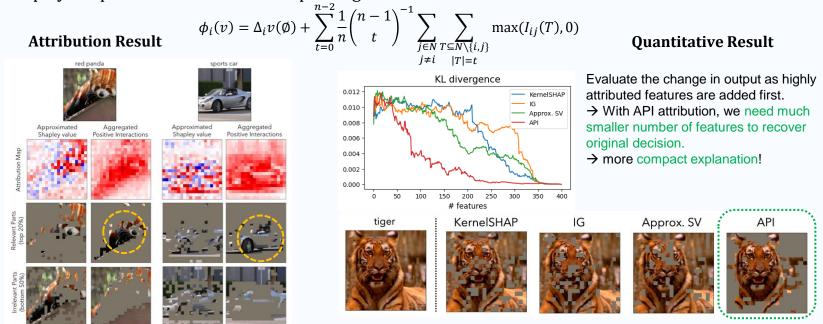


Rethinking Shapley Value for Negative Interactions in Non-convex Games [2025]

Question: How should we compute input attributions when inputs are not independent?

Aggregated Positive Interactions (API)

• Decompose each contribution into interactions and aggregates the positive parts, which represents the player's potential influence on improving the decision.



Automatic Corrections of Artifacts in Neural Text-to-Speech Models [2025]

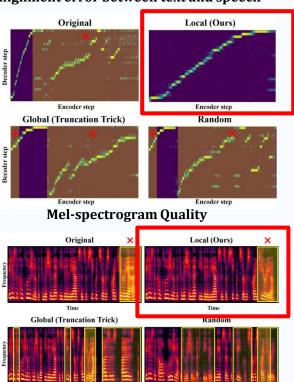
Question: Can we fix errors in speech generation models?

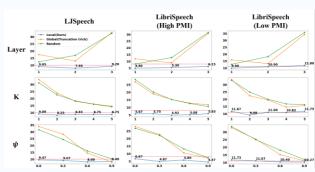
- **Contextualisation errors** within a text-to-speech (TTS) model due to insufficient text context learning
- Understand how model generate contextualisation errors and proposed methods to automatically detect and correct errors



Automatic Corrections of Artifacts in Neural Text-to-Speech Models [2025]

Question: Can we fix errors in speech generation models? Alignment error between text and speech



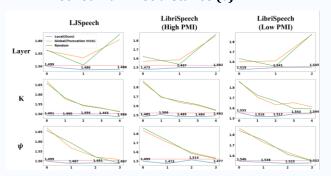


Local(Ours)

Random

Global(Truncation trick)

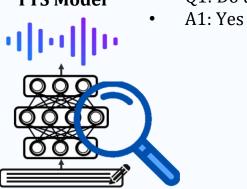
Frechet Wav2Vec distance (↓)

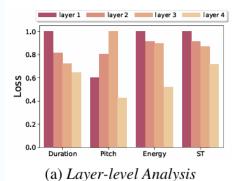


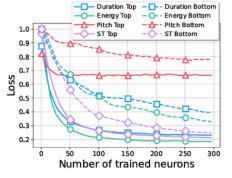
Post-hoc Prosody and Mispronunciation Corrections in TTS Models [2025]

Question: Can we fix errors in speech generation models?

• Q1: Do the internal activations of a Tacotron2 encoder contain acoustic information?

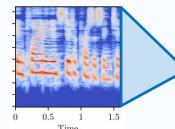


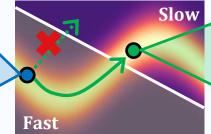


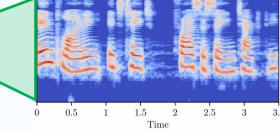


(b) Neuron-level Analysis

- Q2: How can we edit encoder activations to manipulate prosody?
- A2: Edit activations along the manifold





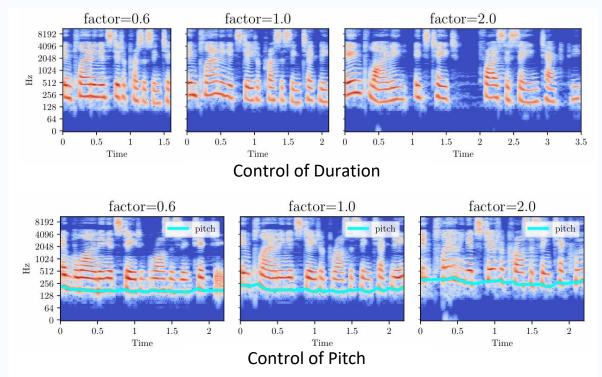


Kyowoon Lee, Artyom Stitsyuk, Gunu Jho, Inchul Hwang and Jaesik Choi, Counterfactual Activation Editing for Post-hoc Prosody and Mispronunciation Correction in TTS Models, Interspeech, 2025.

Post-hoc Prosody and Mispronunciation Corrections in TTS Models [2025]

Question: Can we correct the errors of speech generation models?

Post-hoc control of prosody without retraining model.



Real-Time Explainable AI for Acute Kidney Injury Prediction

- 1. EMR 4. Clinical Insights
- 2. Preprocessing 5. Department-specific preprocessing
- 3. AI-training logic 6. Performance

KAIST – SNUBH AKI Prediction Project

• Developing and clinically applying an AI system that (1) predicts AKI within 48 hours and (2) explains the reasons.

Definition of EMR data for AKI prediction

Patient Information

Basic information				mation		Underlying disease	Prescribing medication before admission		
Age	Sex	ВМІ	ICU	Base Cr	Base eGFR	19 underlying disease + Charlson C omorbidity Index	16 prescription information		

Others: smoking, drinking, surgery

Time Series Data after admission

(Per Day)	Surgery & anesthesia & ICU (Per Day)			(Per Day & Time)	Vital signs (Per Day & Time)			
	ajor/mino surgery	General anesthesia	Surgical times	Values for each test	SBP	DBP	ВРМ	Body Temperature

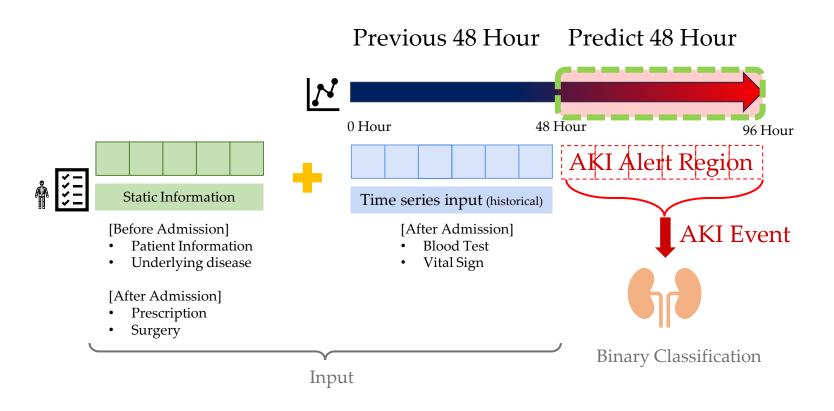
avg / lowhigh / max / min

AKI occurrence within next 48h

AKI Occurence (Per Day & Time)

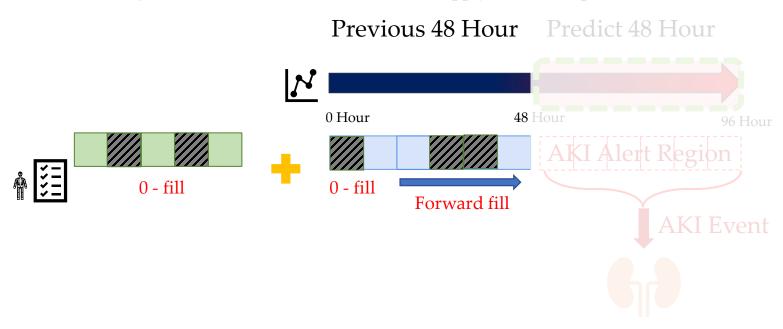
Any AKI Occurence

EMR Data Preprocessing for AKI Prediction



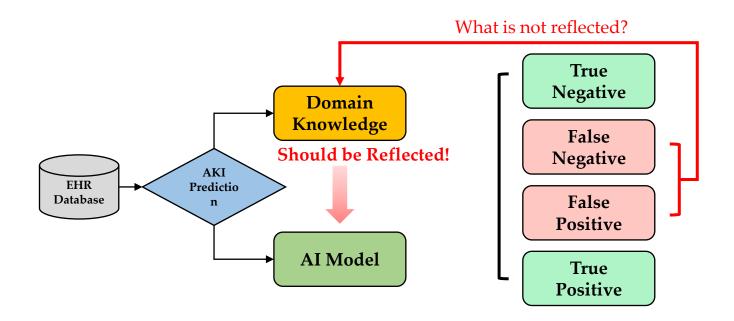
EMR Data Preprocessing for AKI Prediction

- Depending on data-type:
 - Forward-fill for time-series trends; Zero-fill for missing tests/meds.
 - For missing test values or absent medication use, apply zero-fill to preserve information



AI-training Logic

 Analyzing learned vs. missing AKI knowledge → Infusing clinical insights for model improvement.



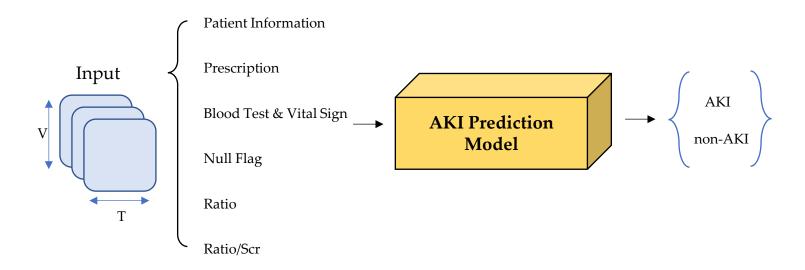
Clinical Insights to Data Preprocessing

- Added a binary variable indicating the presence or absence of side effects from AKI-related medications.
- Example: Vasopressors may cause side effects raising blood pressure.

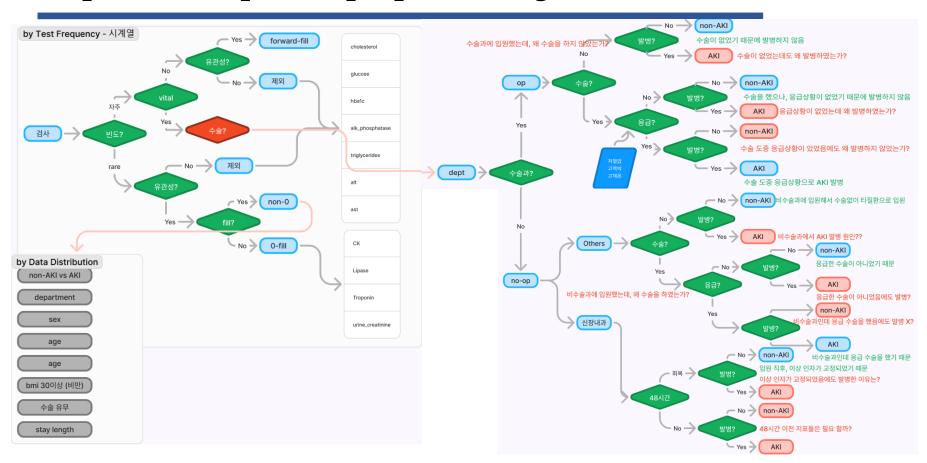
			Vital Signs		s	Drug-induced AKI								
	Renal Fu	nction	Blood	Pressure		Hemodynamically-mediated injury	Inflammation	Renal Hypoperfusion	Rhabdomyolysis	Thrombotic microangiopathy	Crystal nephropathy	Acute Tubular Necrosis	Tubular Injury	
Medicines	Nephrotoxicity	Relevant	Up	Down	Relevant									
arb		V		~	✓	Y								
betablocker		•		~	✓									
acei		V		~	✓	V		V						
acyclovir		V									✓			
aminoglycoside	✓											✓	✓	
amphotericin	✓											✓	✓	
ccb		V		~	✓									
cisplatin	✓				✓							✓	✓	
cyclosporine	✓				✓	✓		V		✓			✓	
diuretics		~				✓								
nsaid	✓				✓	✓	V	V					✓	
tacrolimus	✓				✓	V		V		✓				
vancomycin		V					V						✓	
vasopressor		~	✓		✓									
colistin	✓												✓	
statin		V			V	V			>				✓	

Final Data-Frame for AKI Prediction

- To learn temporal patterns, the dataset was reformatted into (Variable, Time) frames.
- Model design with separate embeddings for different feature types

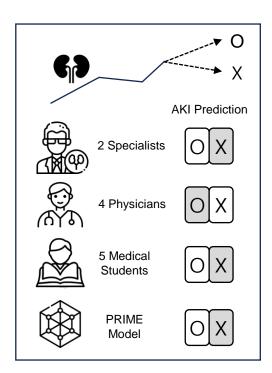


Department-specific preprocessing

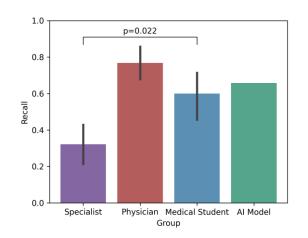


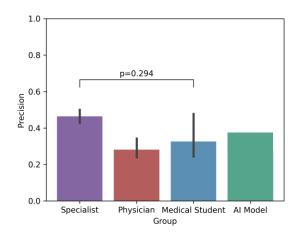
AI모델과 임상의

• 임상의와 AI모델의 성능 비교



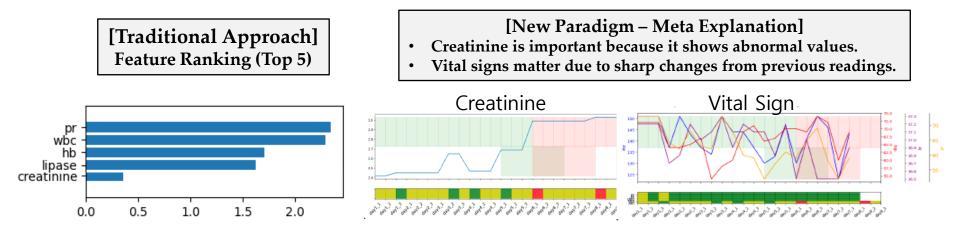
	Recall	Precision
Specialist	32% (4)	47% (1)
Physician	77% (1)	28% (4)
Medical Student	60% (3)	33% (3)
AI(ours)	71% (2)	38% (2)





Meta-Explainability: A New Paradigm of Explainability in Medical AI

- Conventional explainability reduces interpretability by only ranking input importance.
- Adding 'explainability' to explainability: user-friendly and domain-specific medical explanations.



*PR (pulse rate), WBC (white blood cell), HB (hemoglobin), Lipase

Q1: Can we find the role of internal units in Large Language Models (LLMs)?

Q2: Can we find internal units which behaves badly (e.g., making artifacts) in LLMs?

Q3: Can we control internal units which behaves badly in LLMs?

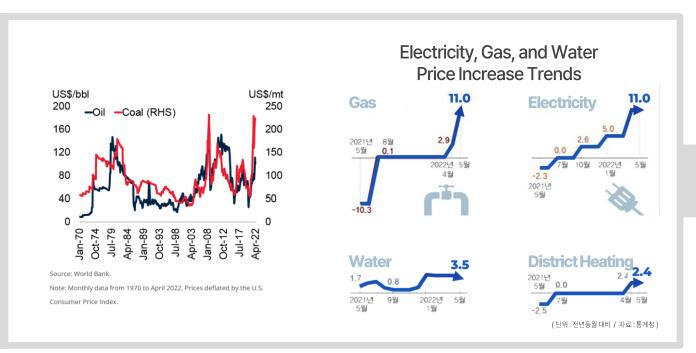
Q4: Can we correct internal units which behaves badly in LLMs in an unsupervised way?

Q6: Can we improve the input attribution method by finding the better path in LLMs?

Thank you

jaesik@ineeji.com

Current Situation: Rising Energy Costs



(출처: JUSTIN-DAMIEN GUÉNETTEJEETENDRA KHADAN, World Bank Blogs, "The energy shock could sap global growth for years", 2022.06.22 | 통계청)

Al Solutions for Process Efficiency and Energy Cost Reduction

PREDICT

Al for Production Process **Prediction and Optimization**

AI Time-Series Forecasting for Process Optimization

State-of-the-Art

Al-Driven Automatic Control

EXPLAIN

Al Explaining the Reasons for Process Optimization

> **Explainable AI Process Explanation Solution**

First Visualization of Time-**Series Deep Learning Decisions**

Raw Material Price, Sales Price, and Demand Consideration

COSTSAVER

Al for Improving Product Spread

Al Solution for Short- and Long-Term **Raw Material Price Forecasting**

Maximize Production Profit

Core technology

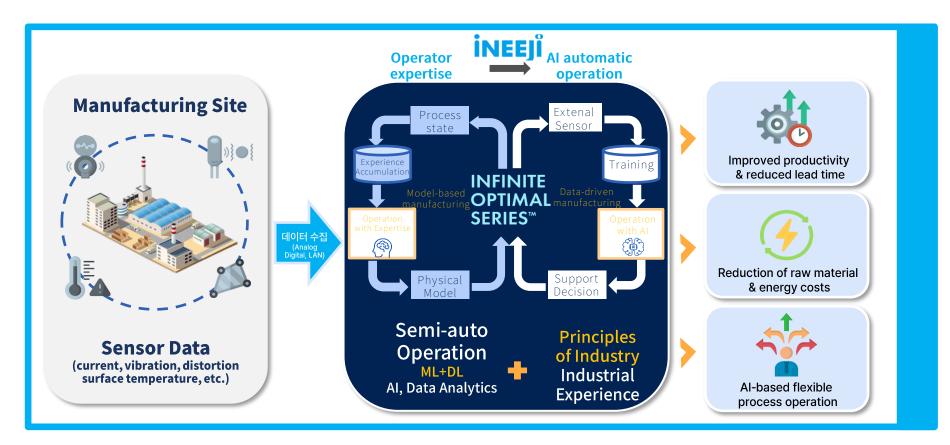
Automated Data Preprocessing Technology

Causal Relationship **Extraction in Key Manufacturing Predictors**

Multivariate Time-Series Forecasting for Processes **Time-Series Forecasting Model Optimization Technology**

XAI for Equipment **Prediction and Process Optimization**

INEEJI INFINITE OPTIMAL SERIES™



INEEJI INFINITE OPTIMAL SERIES

Key Sectors in Manufacturing and Industry

Steel: AI Heat Control for Blast\Electric\Reheating Furnaces

Petrochemicals: Reaction Prediction & Optimization Al

Cement: Al Heat Control for Preheater and Kil

Power Plant: Boiler Optimization AI

지속 가능 및 사업 다각화 사이트

Blast Furnace

Glass Melting Furnace

Cathode Calcination Process

Semiconductor Assembly Process

Bio/Pharmaceuticals

Wind/Hydropower Plant

INEEJI Inc. – Domestic Application Case

Energy Efficiency

- Smart Blast Furnace with Al for real-time monitoring & control
- +240 tons/day molten iron (+5%), 1% fuel cost reduction
- WEF Lighthouse Factory, Pohang (Jul 2022)

Top 5 use cases	Impact		
Machine vision and deep learning	↑ 4% Production output		
Visualization and digitalization	NA Production output		
Al-based BOF temperature control	NA Cost		
Machine learning for rolling force	↑ 5% Productivity		
Al-based automatic control			

- Al-driven process optimization cuts energy costs without extra
- +2 tons/day PO production, 400M KRW annual savings
- Al·DT seen as survival, not choice

- Industry-first Al predictive heat-treatment control in CGL (Continuous Galvanizing Line)
- Real-time process data collection & 2-hour-ahead quality prediction/optimization
- ~98% prediction accuracy, improved quality, and ₩450M annual energy savings

INEEJI Inc. – Domestic Application Case

Contonto	Energy-sa	Energy	
Contents	Improv.(%)	TOE/1year	Source
Steel heat-treatment property prediction & optimal temperature control	3	149.3 ⁽¹⁾	LNG
Glass furnace temperature prediction with optimized control of fuel input and electric booster heating.	3	218.6 ⁽²⁾	LNG
Preheater temperature prediction and optimized fuel input control (pulverized coal, recycled fuel) in a rotary kiln	5	1,540 ⁽³⁾	Pulverized coal
Smart intersection traffic signal optimization with congestion prediction for about 200 vehicles	7	356 ⁽⁴⁾	Gasoline
RHDS diesel quality prediction (within 0.8% error) & fuel consumption optimization	1	261.3 ⁽⁵⁾	by-product fuel
Electric arc furnace operation optimization through molten time prediction using scrap composition and weight	7.1	954.9 ⁽⁶⁾	Electricity
Gas/steam turbine maximum output prediction in combined cycle power plants based on equipment condition	-	-	-
Al-based additive dosage prediction and control technology development	-	-	-

- 1. LNG savings: $2.79 \text{ nm}^3/\text{min} \rightarrow 1,466,424 \text{ nm}^3/\text{year} \rightarrow 149.3 \text{ TOE/year}$
- 2. B-C oil savings: 3% per ton \rightarrow 600 L/day at 250 t/day \rightarrow 218.6 TOE/year
- 3. Coal savings: $0.3 \text{ t/h} \rightarrow 1,758,000 \text{ kcal/h} \rightarrow 1,540 \text{ TOE/year}$
- 4. CO_2 reduction: 1,000 t/year, equivalent to 460,000 L gasoline \rightarrow 356.5 TOE/year
- 5. By-product fuel oil savings: 33.5 L/h \rightarrow 293,626 L/year \rightarrow 261.3 TOE/year
- 6. Power savings: 476 kWh/heat \rightarrow 11,424 kWh/day \rightarrow 4,169,760 kWh/year \rightarrow 954.9 TOE/year

Carried out by **INEEJ**

BestPracticeCase

KG Steel has launched the industry's first Al-driven CGL furnace heat treatment prediction and control system.

The Al updates every 15 seconds, predicts product quality up to 2 hours ahead, and maintains optimal operations.

It achieves 98% prediction accuracy, ensuring quality competitiveness, while reducing LNG consumption for significant cost savings.

KG스틸 당진공장 연속용융아연도금(CGL) 운전실에서 작업자가 'AI 열처리 예측제어 시스템'을 모니터링하는 모습./ KG스틸 제공

Optimization of Alternative Fuel Use in Cement Kilns

Carried out by **INEEJ**

As-is	Excess CO ₂ from coal combustion Quality issues from fuel fluctuations Challenge in optimizing alternative fuel use
To-be	3% ▼ in coal use 22% ▼ in Preheater Stage 1 temperature Increased alternative fuel ratio Reduced carbon emissions

- To reduce carbon emissions from coal combustion, alternative fuels were introduced but caused unstable calorific fluctuations, limiting substitution.
- By predicting unstable preheater temperatures, temperature deviation was reduced by 22%, coal use by 3.2%, enabling stable control with higher alternative fuel usage.

RHDS (Residue Hydrodesulfurization) Process

Diesel Quality Prediction | Product Quality Improvement & Fuel Optimization

SK Innovation Launches "Smart Plant" in Ulsan (May 24, 2024)

The company expects to cut annual costs by over 10 billion KRW. Automated process control (APC) will save around 2 billion KRW by replacing manual adjustments, while predictive maintenance solutions are projected to save an additional 2–3 billion KRW annually.

Before	Delay in quality analysis Real-time control challenging
After	75% lower prediction error Higher productivity via target quality Optimized utility costs
주요데이터	Column temperature and flow rate

INFINITE OPTIMAL SERIES THE SHART

Delays in sampling and analysis hinder real-time control.

Predicting key variables (temperature, flow) improves quality, productivity, and utility efficiency.

75% lower prediction error vs. previous AI models, boosting quality competitiveness.

Entry into the Japanese market

Expanding into the Japanese Optimization Market for Sustainable Growth

철

Strengthen Japanese sales via GS Global and local hires

김연배 일본 지사장

동경대학교 공학박사 前 과기정통부 총괄PM 前 한양대학교 AI R&D센터장 前 삼성전자 AI R&D 상무 前 NHK 주임연구원

Sales Channel

이동철 철강 고문

前 동국제강 일본/미국 법인장 前 동국제강 마케팅총괄

https://www.fki.or.kr > main > news > statement_detail =

한경협, 日경단련과 함께 韓스타트업 일본진출 지원 ❷

2024, 4, 2, -- 한경협, 日경단련과 함께 韓스타트업 일본진출 지원, - 한일·일한미래파트너십기금, 도쿄서 한일 스타트업 협력포럼 개최 -. · AI, 스마트물류, 제약,

https://www.news1.kr.y.articles

한국 유망 스타트업, 日대기업과 사업 협력 나선다 ❷

2024. 4. 2. — 한국경제인협회(한경협)와 일본경제단체연합회(경단련)가 공동 설립한 한일미래파 트너십재단(재단)은 2일 일본 도쿄 경단련회관에서 '한일 스타트업

Pilot Installation

Ciment

First Case

ABB digital systems enhance productivity and save energy at Tokuyama Cement processes

ABB Ability™ Expert Optimizer

Improved operations at Tokuyama Nanyo Cement, one of Japan's largest single plants, reducing kiln heat energy consumption by 3%

INEEJI **ABB** Owns INEEJI solution: Proprietary Engine Provide Explainability Equipment Status

INEEJI Inc. – Domestic Application Case

朝鮮日報

조선경제 > 산업·재계

'공정효율 스타트업' 인이지, 日 진출 1년 만에 실증 실험

산업 공정의 효율을 높이는 인공지능(AI) 기술을 제공하는 스타트업 인이지(INEEJI)는 <mark>일본 컬러 강판 제조 기업 지요다 강철 공업과 AI 공정 실증 실험을 시작</mark>했다고 6일 밝혔다.

인이지는 철강, 석유화학, 시멘트, 발전 기업 등을 대상으로 제조 효율을 높이는 기술과 클라우드 기반의 AI 설루션(Solution)을 제공하고 있다. 제철소 전기로, 유리공장 용해로, 시멘트 소성로 등 공정 변수가 복잡해 정밀한 예측·제어가 어려운 산업 현장에서 제조 데이터를 단순 활용하는 데 그치지 않고, 현장 운영자의 작업 방식과 노하우까지 AI모델에 반영하는 것이 강점이다. 유리 공장의 경우, 용해로 내부 목표 온도를 유지하기위한 최적의 연료 투입량을 파악하는 게 어려웠는데 AI 분석으로 연료 사용은 줄이고 생산성은 더 높이는 식이다. 인이지 관계자는 "설루션을 도입한 현장에서 품질 향상, 일관성 확보, 에너지 비용 절감 등이 입증돼 고객사가 늘고, 일본에도 진출했다"고 했다.

인이지는 작년 4월 일본 도쿄지사를 설립, GS그룹의 종합상사 GS글로벌 재팬과 협업하고 있다. <mark>올해 상반기 지요다 강철 공업을 비롯해 시멘트 제조사, 생활가전 제조 기업등 4사와 실증 실험</mark>을 시작한다. 지요다 강철 공업의 사카타 모토부 사장은 "인이지의 AI 기술을 활용해 품질 향상을 극대화하고, 고객사의 친환경 요구에도 효과적으로 대처해 나가겠다"고 했다. 최재식 인이지 대표는 "다양한 업종의 생산 공정에서 탄소 배출을 줄이고, 에너지 저감 효과를 인정받았다"며 "일본 진출은 선진국 시장 개척을 위한교두보 역할을 할 것"이라고 했다.

- Japan has high entry barriers, requiring localization and trust.
- Japanese companies and consumers value quality and reliability; quick contract wins show domestic technology meets their standards.
- As of 2024, INEEJI leads in domestic Al-based autonomous manufacturing pilot clients.
- Starting with Japan, it aims to expand its global network.