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Introduction

e Understanding model decisions is crucial in medical imaging.
e Vision Transformers (ViTs): state-of-the-art performance.
e Challenge:

o VIiT attention mechanisms are complex — explainability unclear.
o Not all explainability methods (e.g., attention-based or feature attribution
approaches) are always effective.

e Goal: Systematically evaluate and compare the explainability of different ViTs in
medical imaging.
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Methods and Architectures

e Models:
o VIiT: Standard transformer.
o DeiT: Data-efficient, distillation-based ViT.
o DINO: Self-supervised ViT via teacher—student training.
o Swin Transformer: Hierarchical, shifted-window attention.

e Explainability Methods:

o Gradient Attention Rollout: Aggregates weighted attention across layers.

o Grad-CAM: Highlights class-specific image regions most responsible for the
prediction.
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Tasks and Datasets

e Peripheral Blood Cell (PBC) Dataset [1]:

Images of eight blood cell categories, including Basophil, Eosinophil, Erythroblast, Immature
Granulocyte, Lymphocyte, Monocyte, Neutrophil, and Platelet.

e Breast Ultrasound Images Dataset [2]:

Images of three classes, including normal, benign, and malignant.

[1] Acevedo, A., Merino, A., Alférez, S., Molina, A., Boldu, L., Rodellar, J.: A dataset of microscopic
peripheral blood cell images for development of automatic recognition systems. Data in brief 30,
105474 (2020)

[2] Al-Dhabyani, W., Gomaa, M., Khaled, H., Fahmy, A.: Dataset of breast ultrasound images. Data
in brief 28, 104863 (2020)
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Results and Analysis
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Performance Results

e High accuracy alone is not enough — explainability must also be assessed.

Model|Accuracy (%)|F1-score (%)
ViT 98.68 98.73
DeiT 98.05 97.92
DINO 96.97 97.16
Swin 98.58 98.59

Model|Accuracy (%) |F1-score (%)
ViT 87.18 85.66
DeiT 79.49 75.48
DINO 80.77 77.23
Swin 89.74 88.44

Table 1: Performance Results on PBC
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Table 2: Performance Results on
Breast Ultrasound




Explainability Results — Quantitative

e Insertion/Deletion: gradually add or remove important pixels from the heatmap to see

how the target class probability changes.

e DINO + Grad-CAM gives the best scores for both datasets.

Grad-CAM Rollout
ViT|DeiT|DINO|Swin|ViT|DeiT | DINO|Swin|

Grad-CAM Rollout
ViT|DeiT|DINO |Swin|ViT|DeiT|DINO [Swin|

Deletion(]) 0.60] 0.38 | 0.27 |0.82|0.42| 0.52 | 0.36 |0.60
Insertion(1) 0.44| 0.60 | 0.75 | 0.52 |0.44| 0.45 | 0.45 |0.56

Deletion(]) 0.63|0.61 | 0.51 | 0.65|0.61| 0.63 | 0.60 | 0.56
Insertion(1) 0.65| 0.67 | 0.72 | 0.69 [0.61| 0.62 | 0.62 |0.50

Table 3: Deletion and Insertion AUC
across models for PBC dataset
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Table 4: Deletion and Insertion AUC across
models for Breast Ultrasound dataset



Explainability Results — Quantitative
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e Grad-CAM outperforms
Gradient Attention
Rollout, with higher AUC
in insertion and lower
AUC in deletion.

Figure 1: Insertion/Deletion Visualization for PBC Dataset
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I M P E R I A L Figure 2: Insertion/Deletion Visualization for Breast Ultrasound Dataset



Explainability Results — Qualitative - PBC

e Grad-CAM produces more focused, class-specific heatmaps than Gradient Attention
Rollout, with DINO showing the clearest localization
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Figure 3: Compansqn of Gradient Attention Rollout Figure 4: Comparison of Grad-CAM heatmaps for
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Explainability Results — Qualitative - Breast

e Grad-CAM highlights lesion boundaries (benign) and tumor contours (malignant).
e Gradient Rollout remains scattered and less informative.
e DINO + Grad-CAM localizes clinically meaningful regions most consistently.

viT DeiT DINO Swin

Figure 5: Comparison of Gradient Figure 6: Comparison of Grad-CAM
Attention Rollout heatmaps for heatmaps for benign and malignant
benign and malignant breast breast ultrasound images
ultrasound images 10
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Qualitative Error Analysis

e Grad-CAM can reveal the underlying reasons behind model misclassifications.

Ground Truth: Basophil: 32.32% Eosinophil: 0.00% Erythroblast: 0.01% Immature: 67.43% Lymphocyte: 0,00% Monocyte: 0.22%  Neutrophil: 0.01% Platelet: 0.01%
Monocyte

Figure 7: Grad-CAM visualizations of misclassified samples from the PBC dataset using the DINO-ViT model

Gto:'nd;mth: Benign: 17.10% Malignant: 79.17% Normal: 3.73%
nign

Figure 8: Grad-CAM visualizations of misclassified samples from the Breast Ultrasound dataset using the DINO-ViT model.
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Conclusion

Evaluated ViT, DeiT, DINO-ViT, Swin
Transformer with Grad-CAM and
Gradient Attention Rollout on PBC and
Breast Ultrasound datasets.

All models: High accuracy, but
explainability varied.

Grad-CAM: More localized, class-
discriminative than Gradient Attention
Rollout.

DINO + Grad-CAM: Most interpretable
setup, even in misclassifications.

Implication: Model choice in medical
imaging should weigh both accuracy
and interpretability.
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Future Work

Develop ViT-specific explainability
methods with higher faithfulness.

Explore hybrid techniques (spatial

precision + semantic understanding).

Integrate domain priors/medical
constraints to enhance
interpretability.
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Thank you for your attention!

Contact:
leili.barekatain24@imperial.ac.uk
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Different Architectures of ViTs
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[2] Hugo Touwron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Herve Jegou. Training data-efficientimage transformers & distillation through attention. arXiv preprint arXiv.2012.12877, 2021. pages 3,4

[3] Mathilde Caron, Hugo Touvron, Ishan Misra, Herve Jegou, Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerging prop erties in self-supervised vision transformers. arXiv preprint arXiv.2104.14294, 2021. pages 4
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Explainability Methods

Attention- (Gradient) Attention Rollout: [s]
Based Rollout = A(1). A(2). ... . A(B)
Feature Grad-CAM: []
o o _ — Ay
Attribution G=z23 oA

[5] Samira Abnar and Willem Zuidema. Quantifying attention flow in transformers. In Proceedings of the 58th Annual Meeting of the Association

for Computational Linguistics (ACL), pages 4190-4197. Association for Computational Linguistics, 2020. pages 6

[6] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual

explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision 16

(ICCV), pages 618-626,2017. pages 7
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