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! Introduction

2 Vision-Language Model

* There has been growing interest in vision-language models (VLMSs),

which integrate vision and language modalities by jointly learning from image-text datasets.
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Introduction

2 Vision-Language Model

* There has been growing interest in vision-language models (VLMSs),

which integrate vision and language modalities by jointly learning from image-text datasets.
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! Introduction

2 Vision-Language Models in Pathology

* In computational pathology, this approach has been adapted to domain-specific datasets,

resulting in pathology VLMs
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Introduction

2 Vision-Language Models in Pathology

* In computational pathology, this approach has been adapted to domain-specific datasets,

resulting in pathology VLMs

PLIP

Huang et al. (2023)
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lkezogwo et al. (2023)

CONCH

Lu et al. (2024)

An image of
{normal , benign, —
tumor, stroma, ...}

[]ul Quantitative Imaging and

= Informatics Laboratory



Introduction

2 Vision-Language Models in Pathology

» They have achieved remarkable results in various classification tasks, often without requiring

further training or fine-tuning.

PLIP

Huang et al. (2023)

QUILT-NET

Varicus Classification Tasks

An image of Tissue phenotyping
{normal , benign, —> SN — Q)ﬁﬁgﬁing
tumor, stroma, ...} Lymp tdsis detection

Lu et al. (2024)
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! Introduction

2 Motivation

» Most studies have primarily focused on pre-training VLMs and their direct application to downstream

tasks, overlooking two key limitations.

Most prior works mainly focus on patch-level tasks,
while WSI-level applications remain largely unexplored.
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! Introduction

2 Motivation

» Most studies have primarily focused on pre-training VLMs and their direct application to downstream

tasks, overlooking two key limitations.

“benign”
“stroma” Text
normal Encoder

“tumor”

The interpretability of textual embeddings in VLM
has not been thoroughly explored.
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! Introduction

2 Our Approach

* We hypothesize that pre-trained VLMs can inherently represent WSIs in a quantitative and

interpretable manner.
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Introduction

1 Our Approach
« We introduce Vision and Language Embeddings for Explainable WSI Representation (VLEER).
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! Introduction

1 Our Approach

« VLEER facilitates direct interpretation of results through human-readable and understandable

textual representations.

peritubular capillaries,
tubules,

collecting ducts,
interstitium
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Methodology

a Overall,

» VLEER utilizes two components to learn explainable WSI embeddings:
a task-related text pool of pathology keywords
a pre-trained pathology VLM
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! Methodology

1 Task-related pathology text pool

» We collect task-specific keywords illustrating the histology of tissues for each task.
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! Methodology

1 Task-related pathology text pool

« These keywords include pathological terms that are relevant to both normal and abnormal conditions.

» All collected keywords are then reviewed and validated by a board-certified, experienced pathologist.

‘benign”
“stroma”

“normal”

“tumor”

Keyword pool
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! Methodology

1 Textual and visual embedding extraction

« WSl is tiled into a bag of patches, the vision encoder transforms these patches into vision embeddings.

« We adopt the text encoder to embed all keywords in the pool into textual embeddings.

,  Vision
i encoder
WSI
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! Methodology

1 Textual and visual embedding extraction

 We employ various templates to generate diverse text prompts for each keyword.

an image of CLASSNAME.

an image showing CLASSNAME.

an example of CLASSNAME.

a histopathological image showing CLASSNAME.

a histopathological image of CLASSNAME.
CLASSNAME is shown.

this is CLASSNAME.

there is CLASSNAME.

a histopathological photograph of CLASSNAME.

a histopathological photograph showing CLASSNAME.

Lu, Ming Y., et al. "A visual-language foundation model for
computational pathology." Nature medicine 30.3 (2024): 863-874.
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Methodology

2 Vision-Text alignment

 We cluster patches into distinct groups to improve the semantic meaning.

» For each cluster, similarity scores are calculated between all visual and textual embeddings.

o Clustering
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Methodology

2 Cluster representative keywords retrieval

 We rank all keywords based on their similarity scores with each patch image,

aggregate these rankings and retrieve the most representative keywords for each cluster.
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Methodology

a Language embedding generation

* The representative keywords are concatenated by commas
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Methodology

a Language embedding generation

« and forwarded through the text encoder to obtain the cluster-level language embeddings.
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Methodology

a Language embedding generation

« With combined keywords, the model can understand their contextual relationships.
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Methodology

a Vision-language embedding generation

 Language embeddings are then concatenated with the corresponding vision embeddings.

These embeddings are then aggregated into a WSI-level embedding using a trainable MIL aggregator.
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! Experiments

2 MIL aggregators

« We compare vision-only and vision-language embeddings using four MIL aggregators,
- ABMIL, CLAM-SB, CLAM-MB, and TransMIL.

2 Datasets

 Three public TCGA datasets are used for evaluation.
- TCGA-NSCLC: Lung cancer subtyping
- TCGA-RCC: Renal cell carcinoma subtyping
- TCGA-BRCA: Breast invasive carcinoma subtyping

ﬂul Quantitative Imaging and

Informatics Laboratory



! Experiments

a For qualitative analysis,

« We generate heatmaps using the normalized attention scores from the MIL aggregator.

» Following clustering, adjacent patches within the same cluster are merged into a region of interest (Rol).

« Each Rol is annotated with the representative keywords,

which is region-specific and is generated using Vision-Language embeddings (ReVL annotation).
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Results

0 Quantitative evaluation

TCGA-NSCLC TCGA-RCC TCGA-BRCA Average
Ace F1 AUC Ace F1 AUC Ace F1 AUC Ace F1 AUC

V 0.9035 0.9033 0.9739 0.9425 0.9338 0.9949 0.9313 0.9005 0.9707 0.9257 0.9126 0.9798

Aggregator Emb.

ABMIL V-L 0.8989 0.8988 0.9679 0.9310 0.9205 0.9961 0.9479 0.9225 0.9762 0.9259 0.9139 0.9800
CLAM.SB Vv 0.9012 0.9011 0.9715 0.9402 0.9282 0.9951 0.9271 0.8915 0.9649 0.9228 0.9069 0.9771
V-LL 0.9058 0.9056 0.9696 0.9333 0.9181 0.9954 0.9479 0.9196 0.9770 0.9290 0.9144 0.9806
CLAM-MB Vv 0.8989 0.8988 0.9691 0.9333 0.9191 0.9949 0.9292 0.8949 0.9650 0.9205 0.9043 0.9764
i V-L 0.9103 0.9103 0.9699 0.9287 0.9131 0.9964 0.9479 0.9196 0.9780 0.9290 0.9143 0.9814
Vv 0.8736 0.8729 0.9603 0.9333 0.9247 0.9882 0.9146 0.8517 0.9741 0.9072 0.8831 0.9759

TransMIL

V-L  0.8920 0.8918 0.9688 0.9379 0.9236 0.9903 0.9125 0.8479 0.9728 0.9141 0.8878 0.9773

« On average, vision-language embeddings consistently achieved higher performance than

vision-only embeddings across all evaluation metrics, aggregators, and datasets.
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! Results

0 Qualitative evaluation of VLEER

« The ReVL annotations of a papillary renal cell carcinoma in TCGA-RCC

peritubular capillaries,

e . tubules,
tubulopapillary architecture, collecting ducts,
papillary architecture, interstitium

alveolar (nested) pattern,
abundant cytoplasm with reticular pattern,
L hobnailing pattern

e o1 ) o\
classification peritubular capillaries,
intracellular and extracellular
hyaline globules,
tubules,
collecting ducts,

9 interstitium

tubulopapillary architecture,
smaller cells with finely granular
eosinophilic cytoplasm,
abundant cytoplasm with reticular pattern

nuclei are irregular,
blood vessels

ReVL annotation
(a papillary renal cell carcinoma in TCGA-RCC)
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Results

0 Qualitative evaluation of VLEER

« The highly attended regions (red) in the heatmap are closely related to the patterns of papillary cancer,

whereas the low attended regions (green and blue) are normal histology of renal tissues.

Attention heatmap
(a papillary renal cell carcinoma in TCGA-RCC)




! Results

0 Qualitative evaluation of VLEER

 VLEER enhances transparency by providing text-based justifications that align with established

pathology knowledge.

classification abundant mitosis,
‘({ e hyperchromatic and pleomorphic nuclei,
‘ tumor cells that are hyperchromatic and eosinophilic,
cellular and nuclear atypia,

sheets of polygonal cells with a high nuclear to
lacks architectural cytoplasmic ratio

complexity AL et R , e

cellular and nuclear atypia,
abundant Inflammation,
infiltrating nests of tumor cells

type Il pneumocytes and club cells
proliferate to line alveolar walls,
abundant inflammation

lacks architectural complexity,
no lymphovascular or perineural invasion

|

ReVL annotation
(a lung squamous cell carcinoma in TCGA-NSCLC)
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! Results

0 Qualitative evaluation of VLEER

« The combination of ReVL annotations and heatmaps enables the accurate detection of abnormal

regions within a WSI along with their pathological patterns.

|

The highly attended regions (red)

Related to the patterns of squamous
| cancer

2| Normal histology of lung tissues.
I

Attention heatmap
(a lung squamous cell carcinoma in TCGA-NSCLC)
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H Conclusion

2 VLEER

 We propose VLEER for generating vision-language embeddings in WSI representation.

« The method not only increases the performance on downstream tasks but also provides

explainability of the prediction.

 The combination of ReVL annotations and attention heatmaps forms a powerful and interpretable

framework for WSI analysis.
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