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❑Vision-Language Model

• There has been growing interest in vision-language models (VLMs), 

which integrate vision and language modalities by jointly learning from image-text datasets. 
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❑Vision-Language Models in Pathology

• In computational pathology, this approach has been adapted to domain-specific datasets, 

resulting in pathology VLMs
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❑Vision-Language Models in Pathology

• They have achieved remarkable results in various classification tasks, often without requiring 

further training or fine-tuning.
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❑Motivation

• Most studies have primarily focused on pre-training VLMs and their direct application to downstream 

tasks, overlooking two key limitations.
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❑Our Approach

• We hypothesize that pre-trained VLMs can inherently represent WSIs in a quantitative and 

interpretable manner.
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❑Our Approach

• We introduce Vision and Language Embeddings for Explainable WSI Representation (VLEER).
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❑Our Approach

• VLEER facilitates direct interpretation of results through human-readable and understandable

textual representations.
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❑Overall,

• VLEER utilizes two components to learn explainable WSI embeddings:

a task-related text pool of pathology keywords 

a pre-trained pathology VLM
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❑Task-related pathology text pool 

• We collect task-specific keywords illustrating the histology of tissues for each task. 
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❑Task-related pathology text pool 

• These keywords include pathological terms that are relevant to both normal and abnormal conditions.

• All collected keywords are then reviewed and validated by a board-certified, experienced pathologist.
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❑Textual and visual embedding extraction

• WSI is tiled into a bag of patches, the vision encoder transforms these patches into vision embeddings.

• We adopt the text encoder to embed all keywords in the pool into textual embeddings.
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❑Textual and visual embedding extraction

• We employ various templates to generate diverse text prompts for each keyword.
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an image of CLASSNAME. 

an image showing CLASSNAME. 

an example of CLASSNAME. 

a histopathological image showing CLASSNAME. 

a histopathological image of CLASSNAME. 

CLASSNAME is shown. 

this is CLASSNAME. 

there is CLASSNAME. 

a histopathological photograph of CLASSNAME. 

a histopathological photograph showing CLASSNAME.

…

Lu, Ming Y., et al. "A visual-language foundation model for 

computational pathology." Nature medicine 30.3 (2024): 863-874.
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❑Vision-Text alignment

• We cluster patches into distinct groups to improve the semantic meaning.

• For each cluster, similarity scores are calculated between all visual and textual embeddings.
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❑Cluster representative keywords retrieval

• We rank all keywords based on their similarity scores with each patch image, 

aggregate these rankings and retrieve the most representative keywords for each cluster.
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❑Language embedding generation

• The representative keywords are concatenated by commas
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❑Language embedding generation

• and forwarded through the text encoder to obtain the cluster-level language embeddings.
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❑Language embedding generation

• With combined keywords, the model can understand their contextual relationships.
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❑Vision-language embedding generation

• Language embeddings are then concatenated with the corresponding vision embeddings.

• These embeddings are then aggregated into a WSI-level embedding using a trainable MIL aggregator.
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❑MIL aggregators

• We compare vision-only and vision-language embeddings using four MIL aggregators, 

- ABMIL, CLAM-SB, CLAM-MB, and TransMIL.

❑Datasets

• Three public TCGA datasets are used for evaluation. 

- TCGA-NSCLC: Lung cancer subtyping

- TCGA-RCC: Renal cell carcinoma subtyping

- TCGA-BRCA: Breast invasive carcinoma subtyping
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❑For qualitative analysis,

• We generate heatmaps using the normalized attention scores from the MIL aggregator. 

• Following clustering, adjacent patches within the same cluster are merged into a region of interest (RoI).

• Each RoI is annotated with the representative keywords, 

which is region-specific and is generated using Vision-Language embeddings (ReVL annotation).
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❑Quantitative evaluation 

• On average, vision-language embeddings consistently achieved higher performance than 

vision-only embeddings across all evaluation metrics, aggregators, and datasets.
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❑Qualitative evaluation of VLEER

• The ReVL annotations of a papillary renal cell carcinoma in TCGA-RCC
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❑Qualitative evaluation of VLEER

• The highly attended regions (red) in the heatmap are closely related to the patterns of papillary cancer, 

whereas the low attended regions (green and blue) are normal histology of renal tissues. 

Attention heatmap

(a papillary renal cell carcinoma in TCGA-RCC)



❑Qualitative evaluation of VLEER

• VLEER enhances transparency by providing text-based justifications that align with established 

pathology knowledge.
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❑Qualitative evaluation of VLEER

• The combination of ReVL annotations and heatmaps enables the accurate detection of abnormal 

regions within a WSI along with their pathological patterns.
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Attention heatmap

(a lung squamous cell carcinoma in TCGA-NSCLC)
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Related to the patterns of squamous 

cancer
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❑VLEER

• We propose VLEER for generating vision-language embeddings in WSI representation. 

• The method not only increases the performance on downstream tasks but also provides 

explainability of the prediction.

• The combination of ReVL annotations and attention heatmaps forms a powerful and interpretable

framework for WSI analysis.
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Thank you
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