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PERSPECTIVE

Background and Introduction

Shortcut learning in deep neural networks

Robert Geirhos'24, Jorn-Henrik Jacobsen®#4, Claudio Michaelis©'24, Richard Zemel35,
Wieland Brendel's, Matthias Bethge'® and Felix A. Wichmann®15

e Vision Transformers (ViTs) show remarkable
success in medical image analysis.

Variable generalization performance of a

e Transformer-based model empowered by the deep learning model to detect pneumonia in
chest radiographs: A cross-sectional study

[ ] [ J []
attention mechanisms also provides John . Zech*, Marcus A, Bagley*, Manway Liuc", Anthony B. Costa, Josoph
J. Titano?, Eric Karl Oermann3*
° °1° 1 Department of Medicine, California Pacific Medical Center, San Francisco, California, United States of
I n t e r p r et a I I ty America, 2 Verily Life Sciences, South San Francisco, California, United States of America, 3 Department of
Neurological Surgery, Icahn School of Medicine, New York, New York, United States of America,

4 Department of Radiology, lcahn School of Medicine, New York, New York, United States of America

However.....

HUMAN-A| ALIGNMENT

e Machine features are not the same as
human features in learning

e Prone to shortcut learning, bias, and
spurious correlations
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Explanation-Guided Learning for Human-Al Alignment?

* |Integrates human knowledge into training.
 |mproves robustness, fairness, and generalization [6,7]

 Fully supervised approach use:

o Expert-annotated explanations

Manual

o [|terative human feedback " Rely on rigid priors, such ' . annotations are
'\ as: Sparsity, Smoothness, .
{ Stability i : !
Challenges: e e
* Manual annotations are costly and time-consuming. Self-Supervised E6L Fully-Supervised E6L
[1,2] [3,4,5]

 Existing approaches, e.g. contrastive learning, self-supervised explanation learning, often rely on rigid
priors (sparsity, smoothness and stability) - may suppress complex clinical cues.
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Methodology
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e Aiis the model-generated attention map for class i e Cisthe number of classes
* Mi is the corresponding expert mask e S(Aj, Aj) denotes the cosine similarity between
* Nrpis the number of false positives attention maps Ai and A; as sijon the above figure.
* Wrp iS a penalty coefficient. 4
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Experiment Design

e ChestXDet, a subset of NIH ChestX-rayl14, was used for experiments.
e |t includes expert-annotated pathology bounding boxes for improved supervision
e Total of 3,578 patients: 3,025 in the training set, 553 in the test set
e The training set is split into 80/20 train-validation using different random seeds
- Five training runs were conducted for robustness evaluation
- Results averaged across the five runs

e Evaluation performed on the official test set with AUC, F1, MCC and the generalisation gap

between validation and test set.
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H-EGL helps improve accuracy and generalisation of the model

w/o Lya
w/o L£pAL

e H-EGL achieves the best overall performance across all evaluation metrics

e Ablation study confirms the strong impact of the self-supervised component

* Smaller generalization gap observed between validation and test sets, indicating better robustness

AUCsest T AUCgpap I Fliest T Flyap d MCCrest T MCCyap |

KAD [19] 88.14+0.3% 2.5% 68.2+2.5% 1.8% 57.5+2.3% 4.8%
GAIN (9] 88.040.4% 2. 7% 67.84+2.2% 2.4% 57.24+2.0% 5.6%
H-EGL (Ours) 89.3+0.7% 1.5% 69.4+1.9% 0.5% 58.3+:2.5% 3.8%
H-EGL

a=( 89.3+1.0% 1.4% 67.6+1.2% 1.4% 56.5+1.6% 5.2%
B=0 |11, 88.44+0.2% 2.5% 66.9+1.2% 3.2% 56.3+1.0% 6.5%
Baselines

e KAD utilizes knowledge graphs for improved visual reasoning.
e GAIN enhances interpretability via attention guided by cross-entropy loss.
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Clinical Impact

e |n US, approximately 530,000 general thoracic surgeries are performed annually. [1]

e The prevalence of atelectasis accounts for 30.00-75.00% of ordinary thoracic surgery [2]

e Assuming 530,000 operations performed, and 60% of atelectasis happened post-surgery.

e More than 15,900 patients with atelectasis are detected annually due to the increased sensitivity.

- The sensitivity for H-GEL on Atelectasis is 0.697 compared to 0.649 for GAIN and 0.638 for KAD.
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H-EGL shows better alighment with human attention on the attention map.

e Model trained with DAL and H-EGL shows a clear reduction in false positive highlights
e Enhances reliability of the model's visual explanations

Baseline
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HUMAN-AI ALIGNMENT

Discussion and Further Work

e H-EGL demonstrates strong potential for combining self-supervised learning with human-guided
attention alighment

e This combination leads to improved accuracy and generalization
e Attention maps generated by H-EGL show good interpretability and human alignment, offering

insights into the model’s decision-making process

e DAL (self-supervised component) promotes class-specific attention without the need for localization
labels, supporting flexibility and scalability

e Explore an optimal balance between a and B to further refine performance
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H-EGL Demonstrates Strong Resilience to Noisy Inputs

— Adding normally distributed noise on the test image at inference time with various o value.

Noise Robustness Comparison
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Implementation

Attention maps are extracted
from the decoder’s cross-
attention layers
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[1] Zhang, Xiaoman, et al. "Knowledge-enhanced visual-language pre-training on chest radiology images." Nature Communications 14.1 (2023): 4542. 13
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