

HYBRID EXPLANATION-GUIDED LEARNING FOR TRANSFORMER-BASED CHEST X-RAY DIAGNOSIS

Shelley Zixin Shu¹, Haozhe Luo¹⁵, Alexander Poellinger²³, and Mauricio Reyes¹⁴

- ¹ARTORG Center for Biomedical Engineering Research, University of Bern, Murtenstrasse 50, Bern 3008, Switzerland
- ² Inselspital (Bern University Hospital), 3010 Bern, Switzerland
- ³ Insel Gruppe Bern Universitätsinstitut für Diagnostische, Interventionelle und Pädiatrische Radiologie
- ⁴ Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
- ⁵ Kaiko.AI, Zurich, Switzerland

Background and Introduction

- Vision Transformers (ViTs) show remarkable
 success in medical image analysis.
- Transformer-based model empowered by the attention mechanisms also provides interpretability

However.....

- Machine features are not the same as human features in learning
- Prone to shortcut learning, bias, and spurious correlations

Shortcut learning in deep neural networks

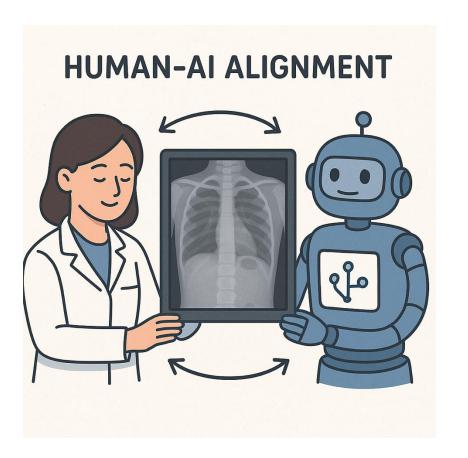
Robert Geirhos ^{1,2,4} Michaelis ^{1,2,4}, Richard Zemel^{3,5}, Wieland Brendel^{1,5}, Matthias Bethge^{1,5} and Felix A. Wichmann ^{1,5}

RESEARCH ARTICLE

Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study

John R. Zecho^{1©}, Marcus A. Badgeleyo^{2©}, Manway Liuo², Anthony B. Costao³, Joseph J. Titano⁴, Eric Karl Oermanno³*

 Department of Medicine, California Pacific Medical Center, San Francisco, California, United States of America, 2 Verily Life Sciences, South San Francisco, California, United States of America, 3 Department of Neurological Surgery, Icahn School of Medicine, New York, New York, United States of America,
 Department of Radiology, Icahn School of Medicine, New York, New York, United States of America



Explanation-Guided Learning for Human-Al Alignment?

- Integrates human knowledge into training.
- Improves robustness, fairness, and generalization [6,7]
- Fully supervised approach use:
 - **Expert-annotated explanations**
 - Iterative human feedback

Challenges:

- Manual annotations are costly and time-consuming.
- System Manual Rely on rigid priors, such annotations are as: Sparsity, Smoothness, costly and time-Stability consuming

Self-Supervised EGL

Existing approaches, e.g. contrastive learning, self-supervised explanation learning, often rely on rigid priors (sparsity, smoothness and stability) \rightarrow may suppress complex clinical cues.

We propose a Hybrid Explanation-Guided Learning (H-EGL) method to integrate selfsupervised and expert-guided attention models for human-Al alignment.

AI

Fully-Supervised EGL

[3,4,5]

^[1] Singh, Krishna Kumar, et al. "Don't judge an object by its context: learning to overcome contextual bias." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.

^[2] Pedapati, Tejaswini, et al. "Learning global transparent models consistent with local contrastive explanations." Advances in neural information processing systems 33 (2020): 3592-3602.

^[3] Gao, Yuyang, et al. "Going beyond xai: A systematic survey for explanation-guided learning." ACM Computing Surveys 56.7 (2024): 1-39.

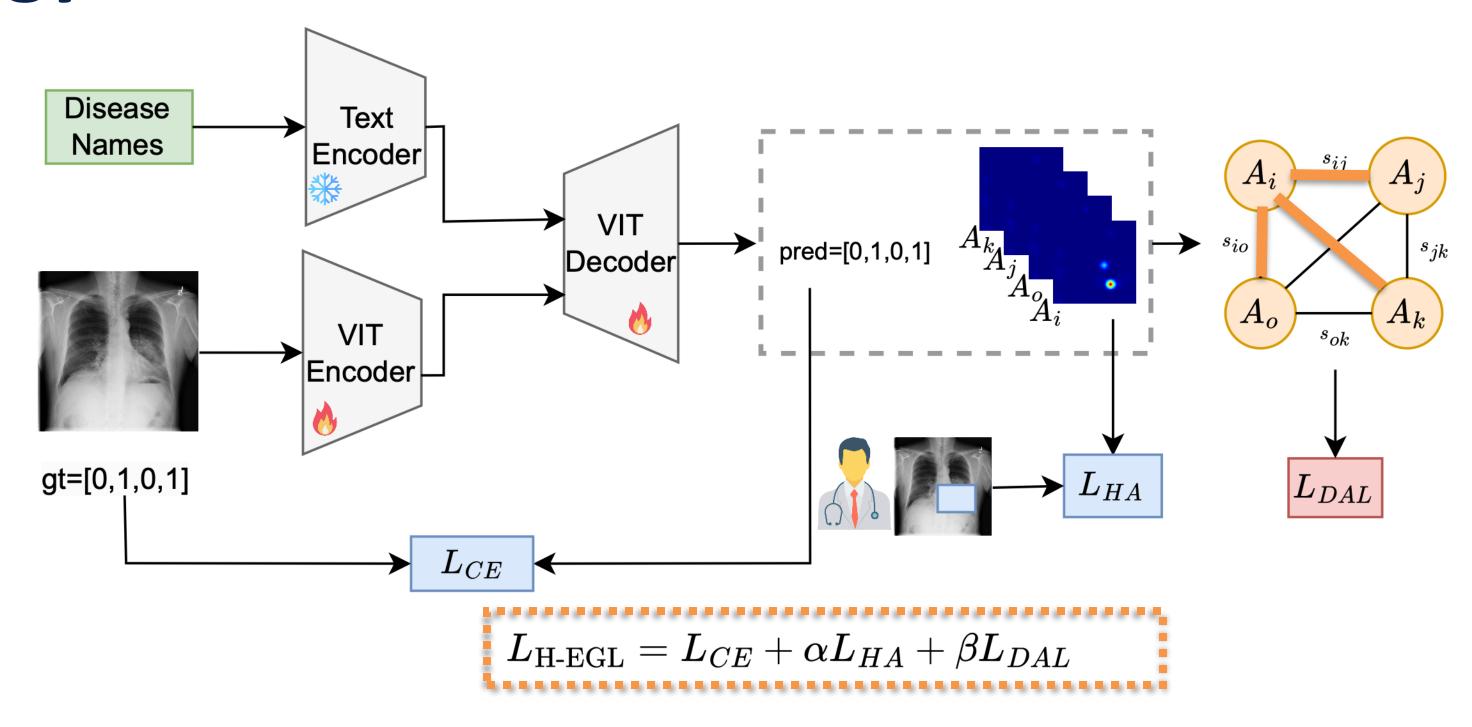
^[4] Popordanoska, Teodora, Mohit Kumar, and Stefano Teso. "Machine guides, human supervises: Interactive learning with global explanations." arXiv preprint arXiv:2009.09723 (2020).

^[5] Rieger, Laura, et al. "Interpretations are useful: penalizing explanations to align neural networks with prior knowledge." International conference on machine learning. PMLR, 2020.

^[6] Rieger, L., Singh, C., Murdoch, W., Yu, B.: Interpretations are useful: penalizing explanations to align neural networks with prior knowledge. In: International conference on machine learning. pp. 8116–8126. PMLR (2020)

^[7] Wu, S., Zhang, X., Wang, B., Jin, Z., Li, H., Feng, J.: Gaze-directed vision gnn for mitigating shortcut learning in medical Image Computing and Computer-Assisted Intervention. pp. 514–524. Springer (2024)

Methodology



$$\mathcal{L}_{ ext{HA}} = 1 - rac{2 imes |A_i \odot M_i|}{|A_i| + |M_i| + w_{FP} N_{FP}},$$

- A_i is the model-generated attention map for class i
- M_i is the corresponding expert mask
- N_{FP} is the number of false positives
- wfp is a penalty coefficient.

$$\mathcal{L}_{ ext{DAL}} = rac{2}{C(C-1)} \sum_{i=1}^{C-1} \sum_{j=i+1}^{C} |S(A_i, A_j)|$$

- C is the number of classes
- S(A_i, A_j) denotes the cosine similarity between attention maps A_i and A_j, as s_{ij} on the above figure.

Experiment Design

- ChestXDet, a subset of NIH ChestX-ray14, was used for experiments.
- It includes expert-annotated pathology bounding boxes for improved supervision
- Total of 3,578 patients: 3,025 in the training set, **553 in the test set**
- The training set is split into 80/20 train-validation using different random seeds
 - Five training runs were conducted for robustness evaluation
 - Results averaged across the five runs
- Evaluation performed on the **official test set** with AUC, F1, MCC and the generalisation gap between validation and test set.

H-EGL helps improve accuracy and generalisation of the model

- H-EGL achieves the best overall performance across all evaluation metrics
- Ablation study confirms the strong impact of the self-supervised component
- Smaller generalization gap observed between validation and test sets, indicating better robustness

		$\mathrm{AUC}_{test}\uparrow$	$\mathrm{AUC}_{gap}\downarrow$	$F1_{test} \uparrow$	$F1_{gap} \downarrow$	$\mathrm{MCC}_{test}\uparrow$	$\mathrm{MCC}_{gap}\downarrow$
	KAD [19]	$88.1 {\pm} 0.3\%$	2.5%	$68.2 {\pm} 2.5\%$	1.8%	$57.5 \pm 2.3\%$	4.8%
	GAIN [9]	$88.0 {\pm} 0.4\%$	2.7%	$67.8 {\pm} 2.2\%$	2.4%	$57.2 \pm 2.0\%$	5.6%
	H-EGL (Ours)	$89.3 {\pm} 0.7\%$	1.5%	$69.4 {\pm} 1.9\%$	0.5%	$58.3{\pm}2.5\%$	3.8%
	H-EGL						
w/o $\mathcal{L}_{ ext{HA}}$ w/o $\mathcal{L}_{ ext{DAL}}$	$lpha = 0 \ eta = 0 \ eta = 0$	$89.3{\pm}1.0\%$ $88.4{\pm}0.2\%$	$egin{array}{c} \mathbf{1.4\%} \ 2.5\% \end{array}$	$67.6{\pm}1.2\% \ 66.9{\pm}1.2\%$	$1.4\% \ 3.2\%$	$56.5{\pm}1.6\%$ $56.3{\pm}1.0\%$	$\frac{5.2\%}{6.5\%}$

Baselines

- KAD utilizes knowledge graphs for improved visual reasoning.
- GAIN enhances interpretability via attention guided by cross-entropy loss.

Clinical Impact

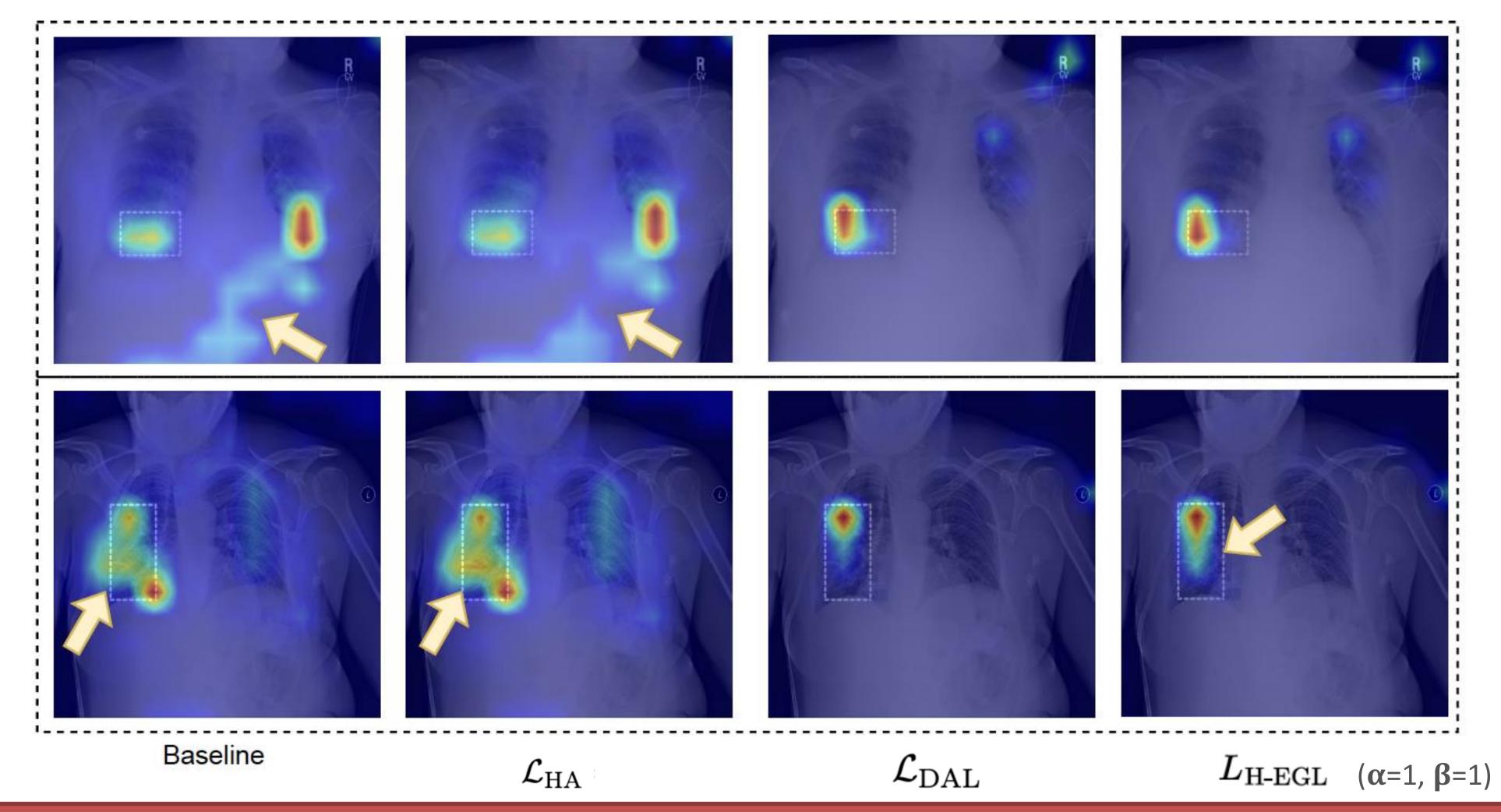
- In US, approximately 530,000 general thoracic surgeries are performed annually. [1]
- The prevalence of atelectasis accounts for 30.00–75.00% of ordinary thoracic surgery [2]
- Assuming 530,000 operations performed, and 60% of atelectasis happened post-surgery.
- More than 15,900 patients with atelectasis are detected annually due to the increased sensitivity.
 - The sensitivity for H-GEL on Atelectasis is **0.697** compared to **0.649** for GAIN and 0.638 for KAD.

[1] Byrd, Catherine T., Kiah M. Williams, and Leah M. Backhus. "A brief overview of thoracic surgery in the United States." *Journal of Thoracic Disease* 14.1 (2022): 218. [2] Zhao, Yongsheng, et al. "Systematic review and meta-analysis on perioperative intervention to prevent postoperative atelectasis complications after thoracic surgery."

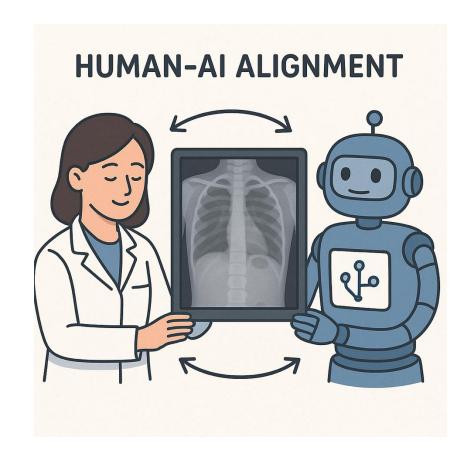
Annals of Palliative Medicine 10.10 (2021): 107260734-107210734.

H-EGL shows better alignment with human attention on the attention map.

- Model trained with DAL and H-EGL shows a clear reduction in false positive highlights
- Enhances reliability of the model's visual explanations



Discussion and Further Work

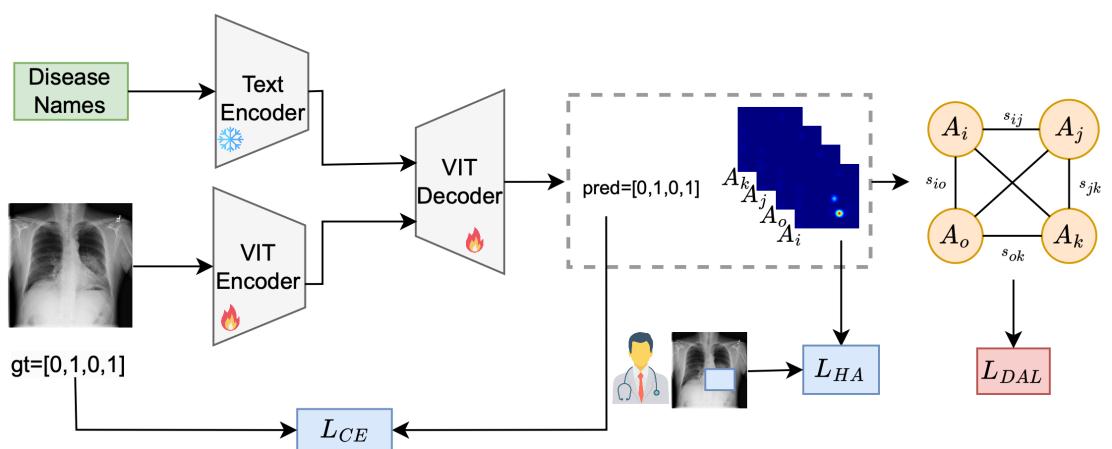


- H-EGL demonstrates strong potential for combining self-supervised learning with human-guided attention alignment
- This combination leads to improved accuracy and generalization
- Attention maps generated by H-EGL show good interpretability and human alignment, offering insights into the model's decision-making process
- DAL (self-supervised component) promotes class-specific attention without the need for localization labels, supporting flexibility and scalability
- Explore an optimal balance between α and β to further refine performance

HYBRID EXPLANATION-GUIDED LEARNING FOR TRANSFORMER-BASED CHEST X-RAY DIAGNOSIS

Shelley Zixin Shu¹, Haozhe Luo¹⁵, Alexander Poellinger²³, and Mauricio Reyes¹⁴

- ¹ARTORG Center for Biomedical Engineering Research, University of Bern, Murtenstrasse 50, Bern 3008, Switzerland
- ² Inselspital (Bern University Hospital), 3010 Bern, Switzerland
- ³ Insel Gruppe Bern Universitätsinstitut für Diagnostische, Interventionelle und Pädiatrische Radiologie
- ⁴ Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
- ⁵ Kaiko.AI, Zurich, Switzerland

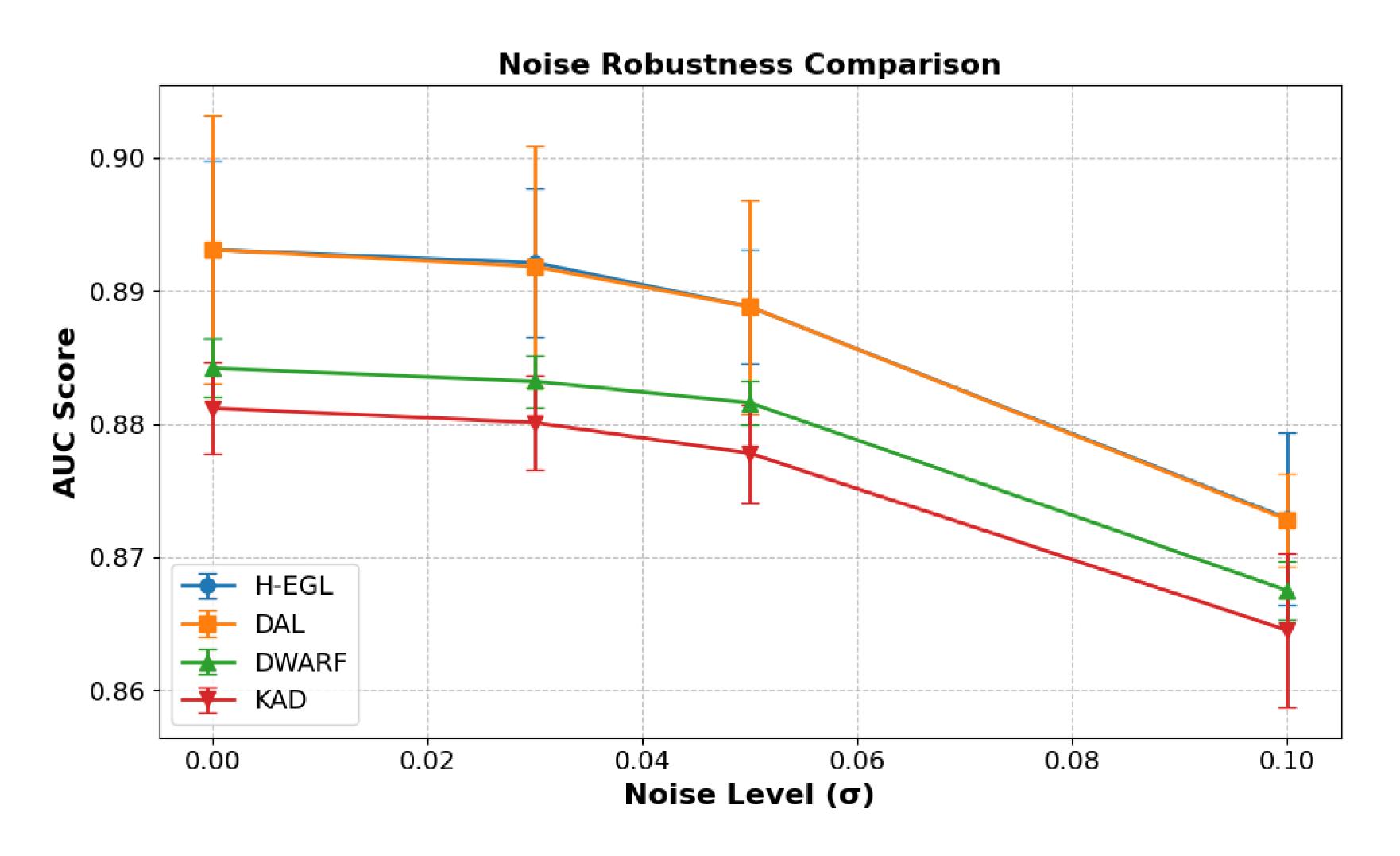


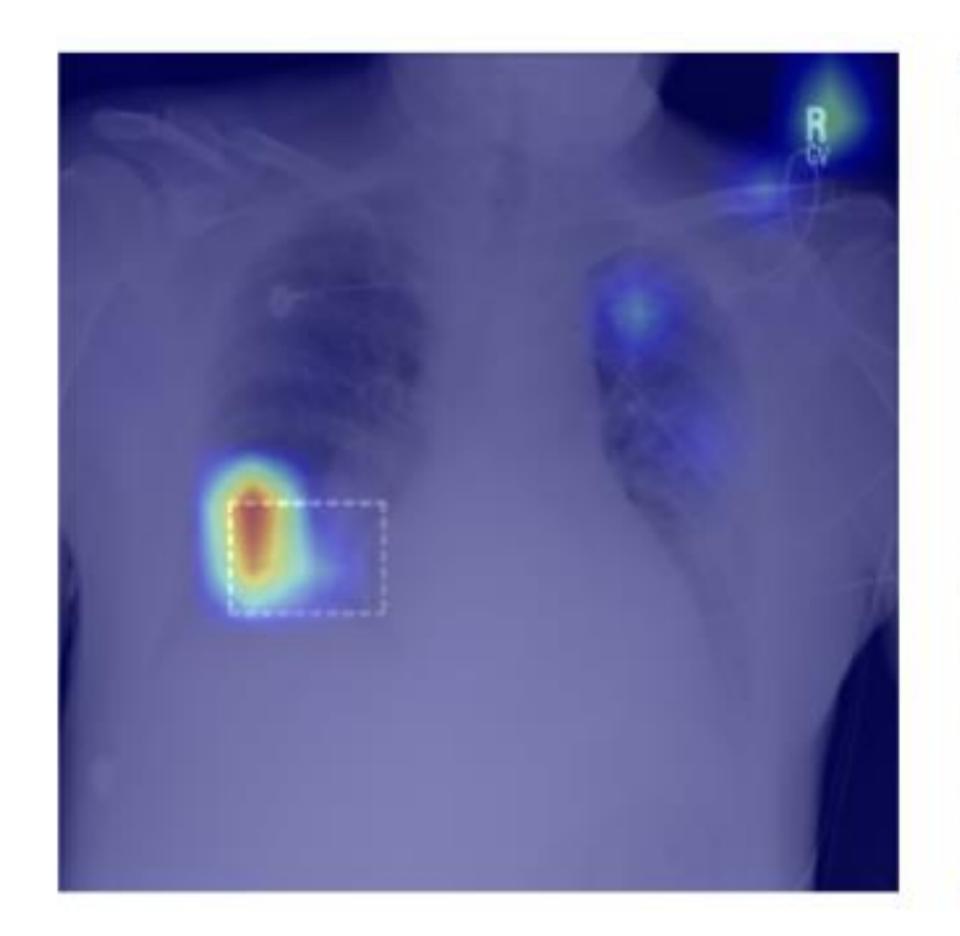
Contact: Shelley Zixin Shu, zixin.shu@unibe.ch

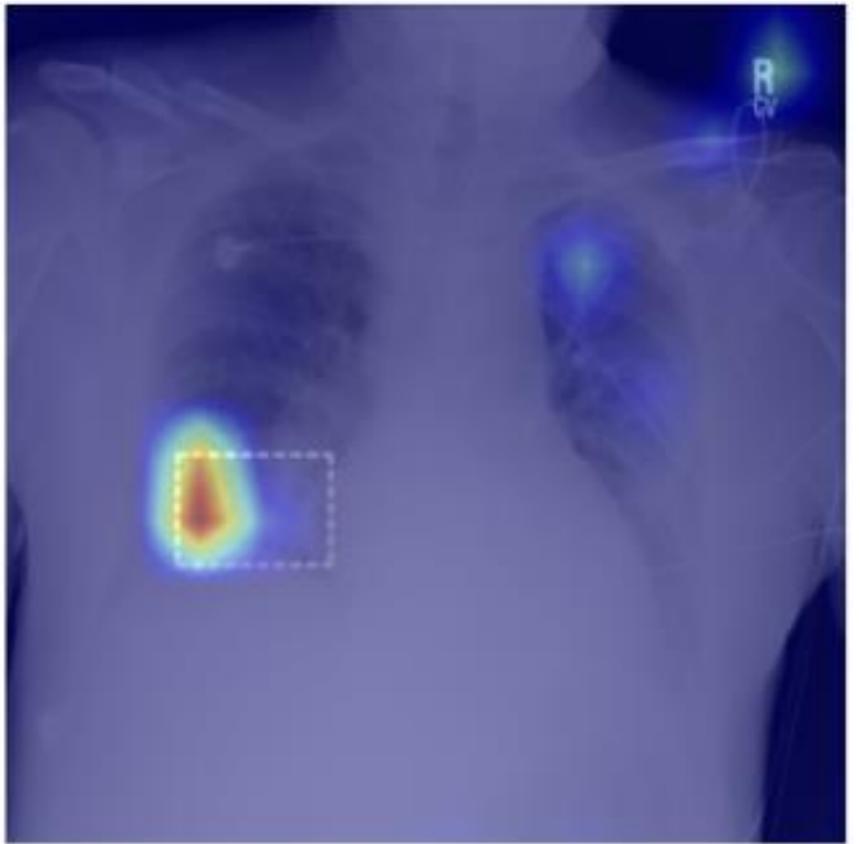
 $L_{ ext{H-EGL}} = L_{CE} + lpha L_{HA} + eta L_{DAL}$

H-EGL Demonstrates Strong Resilience to Noisy Inputs

— Adding normally distributed noise on the test image at inference time with various σ value.

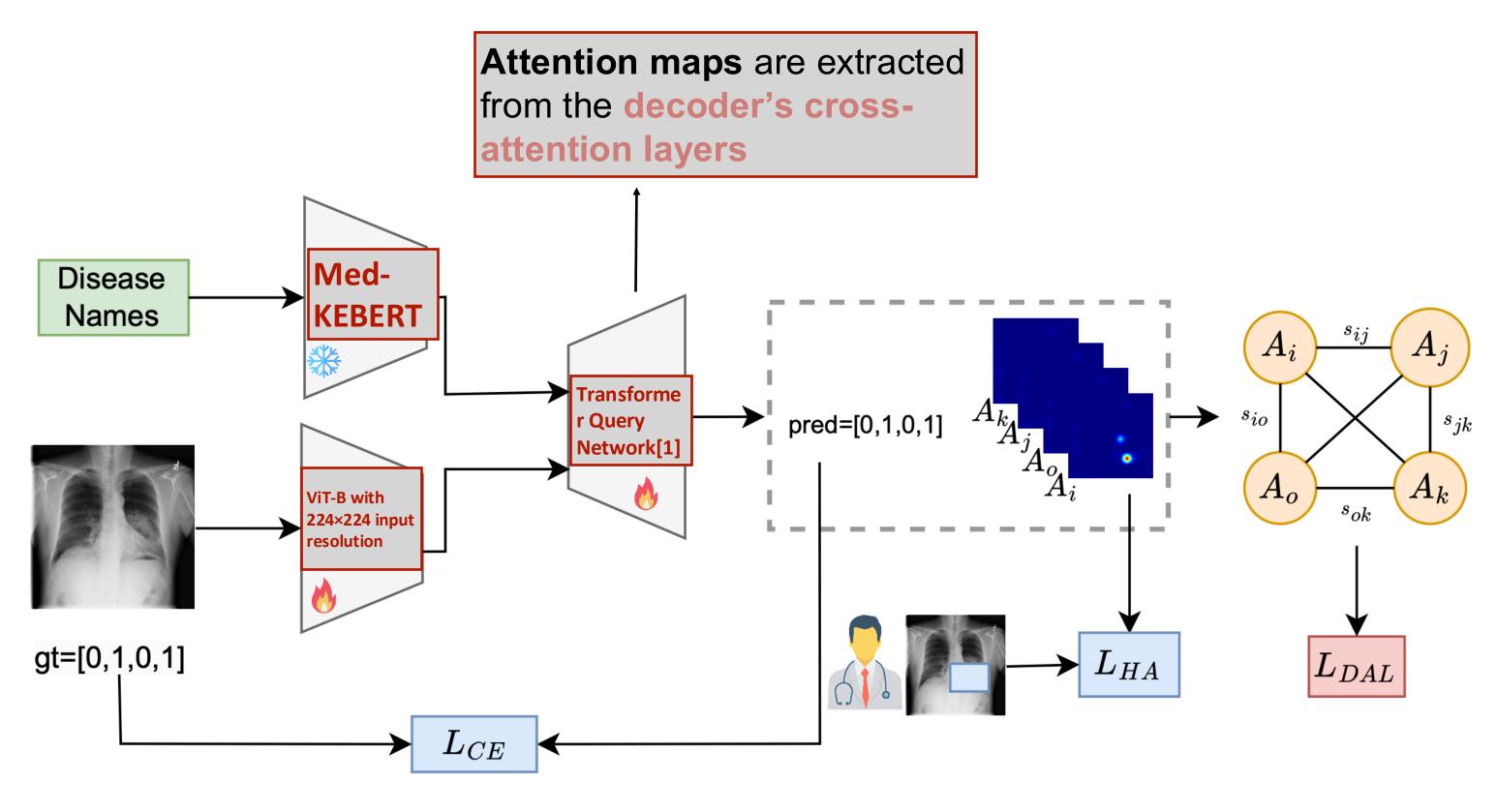






 $\mathcal{L}_{ ext{DAL}}$

Implementation



$$L_{ ext{H-EGL}} = L_{CE} + \alpha L_{HA} + \beta L_{DAL}$$