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Background and Introduction

• Vision Transformers (ViTs) show remarkable 

success in medical image analysis.

• Transformer-based model empowered by the 

attention mechanisms also provides 

interpretability
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• Machine features are not the same as 
human features in learning

• Prone to shortcut learning, bias, and 
spurious correlations

However…..



Workshop on Interpretability of Machine Intelligence in Medical Image Computing (iMIMIC) at MICCAI 2025 H-EGL——Shelley Zixin Shu et al.

3

• Integrates human knowledge into training.

• Improves robustness, fairness, and generalization [6,7]

• Fully supervised approach use:

◦ Expert-annotated explanations

◦ Iterative human feedback

Challenges:

• Manual annotations are costly and time-consuming.

• Existing approaches, e.g. contrastive learning, self-supervised explanation learning, often rely on rigid 
priors (sparsity, smoothness and stability) → may suppress complex clinical cues.

Explanation-Guided Learning for Human-AI Alignment?

We propose a Hybrid Explanation-Guided Learning (H-EGL) method to integrate self-
supervised and expert-guided attention models for human-AI alignment.

AI
System
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Methodology
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• Ai is the model-generated attention map for class i
• Mi is the corresponding expert mask
• NFP is the number of false positives
• wFP is a penalty coefficient. 

• C is the number of classes
• S(Ai, Aj) denotes the cosine similarity between 

attention maps Ai and Aj, as sij on the above figure.
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Experiment Design

• ChestXDet, a subset of NIH ChestX-ray14, was used for experiments. 

• It includes expert-annotated pathology bounding boxes for improved supervision

• Total of 3,578 patients: 3,025 in the training set, 553 in the test set

• The training set is split into 80/20 train-validation using different random seeds

- Five training runs were conducted for robustness evaluation

- Results averaged across the five runs

• Evaluation performed on the official test set with AUC, F1, MCC and the generalisation gap 

between validation and test set. 
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H-EGL helps improve accuracy and generalisation of the model

• KAD utilizes knowledge graphs for improved visual reasoning. 
• GAIN enhances interpretability via attention guided by cross-entropy loss.

•H-EGL achieves the best overall performance across all evaluation metrics

•Ablation study confirms the strong impact of the self-supervised component

•Smaller generalization gap observed between validation and test sets, indicating better robustness

w/o
w/o

Baselines
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Clinical Impact

• In US, approximately 530,000 general thoracic surgeries are performed annually. [1]

• The prevalence of atelectasis accounts for 30.00–75.00% of ordinary thoracic surgery [2]

• Assuming 530,000 operations performed, and 60% of atelectasis happened post-surgery.

• More than 15,900 patients with atelectasis are detected annually due to the increased sensitivity.

- The sensitivity for H-GEL on Atelectasis is 0.697 compared to 0.649 for GAIN and 0.638 for KAD.

[1] Byrd, Catherine T., Kiah M. Williams, and Leah M. Backhus. "A brief overview of thoracic surgery in the United States." Journal of Thoracic Disease 14.1 (2022): 218.
[2] Zhao, Yongsheng, et al. "Systematic review and meta-analysis on perioperative intervention to prevent postoperative atelectasis complications after thoracic surgery." 
Annals of Palliative Medicine 10.10 (2021): 107260734-107210734.
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H-EGL shows better alignment with human attention on the attention map.

• Model trained with DAL and H-EGL shows a clear reduction in false positive highlights
• Enhances reliability of the model's visual explanations

8(𝛂=1, 𝛃=1)
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• H-EGL demonstrates strong potential for combining self-supervised learning with human-guided 

attention alignment

• This combination leads to improved accuracy and generalization

• Attention maps generated by H-EGL show good interpretability and human alignment, offering 

insights into the model’s decision-making process

• DAL (self-supervised component) promotes class-specific attention without the need for localization 

labels, supporting flexibility and scalability

• Explore an optimal balance between 𝛂 and β to further refine performance
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Discussion and Further Work
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H-EGL Demonstrates Strong Resilience to Noisy Inputs
— Adding normally distributed noise on the test image at inference time with various σ value.
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Implementation

Med-
KEBERT

Transforme
r Query 
Network[1]

Attention maps are extracted 

from the decoder’s cross-

attention layers

ViT-B with 
224×224 input 
resolution

[1] Zhang, Xiaoman, et al. "Knowledge-enhanced visual-language pre-training on chest radiology images." Nature Communications 14.1 (2023): 4542.
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