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Need For XAl

» Deep learning models used are mostly black-box models /

—

Black Box

N

Suppose this image is classified as pneumonia.
But why?




Case-study

* Assumption 1:

* Multi-source datasets (data scarcity). :f%:: :fﬁ::
HiHE HHiBE
« Assumption 2: t t

e Class-imbalance from these 2 sources.

Gautam, et al. "Demonstrating the risk of imbalanced datasets in chest x-ray image-based diagnostics by prototypical relevance propagation.” ISBI 2022



Case-study

* 2 sources: ChestX-Rayl4 (H1) & CheXPert (H2)
Problem: Pneumonia (P) vs Non-Pneumonia (NP)

* Label-imbalance? :

source-related disease imbalance
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Testing
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Gautam, et al. "Demonstrating the risk of imbalanced datasets in chest x-ray image-based diagnostics by prototypical relevance propagation.” ISBI 2022



What is the model looking at? | s e e

90H1-10H2 60H1-40H2

Gautam et al. "Demonstrating the risk of imbalanced datasets in chest x-ray image-based diagnostics by prototypical relevance propagation.” ISBI 2022



Explainability & Interpretabilityl"

Post-hoc methods Self-explaining models

* Model-agnostic: LIME!] * Aligning latent to known

. Model-aware: LRPE! visual concepts!: Prototypes
Post-hoc explanations: Self-explainable models:
Provides prediction Provides prediction and

first, then why! why at the same time!

[1] Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence,
1(5):206-215, 2019

[2] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should | trust you?”: Explaining the predictions of any classifier. CoRR, abs/1602.04938, 2016.

[3] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Miiller, and Wojciech Samek. On pixel-wise explanations for non-linear
classifier decisions by layer-wise relevance propagation. PLOS ONE, 10(7):1-46, 07 2015.

[4] Alina Barnett, Jonathan Su, Cynthia Rudin, Chaofan Chen, Oscar Li. This looks like that: Deep learning for interpretable image recognition. In Proceedings of Neural
Information Processing Systems (NeurlPS), 2019.



Post-hoc XAl for Towards Self-Explainable
Representations Models



Post-hoc XAl for
Representations



Post-hoc Methods

« Many methods exists to explain predictions.
* How to handle unlabeled vectorial outputs?

* Increasingly important with improvements in representation
earning.

Vector representation

| ;
Deep MNeural Network J o { What influenced the ]

representation?




RELAX: A representation learning explainability
framework

 Key idea: mask out

pa rts Of th e i m a g e % Representation space
R - ® no mask
and monitor how H o bird o occluded
. — @ Ira occiude Importance

the representation e masked embeddings . . {
changes. 1l 5 4

& &Y o

E .
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Wickstrgm et al. "RELAX: Representation learning explainability.” 1JCV 2023



RELAX: A representation learning explainability
framework

Representation sp
_ nf) mask
Rij = Em|[s(h, h) M;;] S
A
| N
Rij =~ Y " s(h, h,) M;;(n) =
n=1
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Wickstrgm et al. "RELAX: Representation learning explainability.” 1JCV 2023



RELAX gives highest quality explanations
of representations

Scores Methods Supervised SimCLR SwAV
COCO VOC COCO VOC COCO VOC

Saliency 67.1£0.0  82.840.0  59.9+0.0  75940.0  60.0£0.0  76.3+0.0
... Smooth Saliency 62.8+£0.0  79.5+0.0  60.1£0.0 759400  59.8+0.0  T76.4+0.0
P‘g’ﬁgg Guided Saliency 66.6:£0.0 82.9+0.0 58.4+00 73300 59.5£00  T5.8+0.0
Integrated Gradients ~ 47.840.0  59.1+£0.0 329400  48.240.0  36.5+0.0  5L520.0
Grad CAM 66.8+£0.4  TRT7E05 47707 5T.0L0.6  48.7+10 58608
RELAX 72.6+0.1 86.6+0.2 68.74+0.3 85.240.3 67.840.2 84.740.2
U-RELAX 721403 86.4+0.4  68.6£0.2 850405  66.7+0.7  84.1+0.4
Saliency 62.2+0.0  80.1£0.0  56.5+0.0  TL3£0.0  56.5£0.0  T1L4+0.0
Smooth Saliency 59.24£0.0 741200  56.4£0.0  TLIX0.0  56.4£0.0  TL3£0.0
topk  Guided Saliency 62.2+0.0  80.2+0.0  55.1+0.0  69.0£0.0  56.3£0.0  TLIX0.0
Integrated Gradients  47.7£0.0  6L0£0.0  354+00  52.8+0.0  33.2+0.0  49.040.0
Grad CAM 64.0+£0.0  78.340.0  43.6+0.0 553400  43.1+0.1  54.8+0.0
RELAX 72.840.4 86.940.1 69.04+0.3 85.6+0.2 68.1+0.4 85.140.2
U-RELAX 722404 86.5+0.2  68.8+0.4 853401  66.6+0.4  84.2+0.3
Saliency 46.8+£0.0  59.5+0.0 412400  53.6+0.0  40.9+0.0  53.4+0.0
relevance  Smooth Saliency 42.6£0.0 546200  4L1E0.0  53.4£0.0  40.9£0.0  53.3+0.0
ranle | Guided Saliency 46.8+£0.0  59.8+0.0  40.6£0.0  53.0£0.0  40.9+0.0  53.3+0.0
Integrated Gradients  38.4£0.0  51.9£0.0  319+00  47.240.0  323+0.0  48.320.0
Grad CAM 46.0+£0.0  60.2+0.0  37.5+0.0  50.7£0.0 37800  50.9+0.0
RELAX 56.4+0.0 70.240.1 54.240.2 69.840.1 52.440.1 69.140.0
U-RELAX 524£0.0 647201 507401 63.3£0.1 46201  59.5+0.0

Table 1 Pointing game, top k, and relevance rank scores in percentages and averaged over 3 runs, Higher is better and
bold numbers hizhlizght the top performance. Results show that our method improves on the baseline across all scores.
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Compare feature extractor trained with
and without supervision
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Compare deep learning feature extractors

SIMCLR
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Content-based image retrieval of CT liver images

« Simple idea: retrieve images in large database based on image content.

» Use self-supervised learning to train feature extractor without labeled data.

Feature
extractor

—>

f Representation space \

N /

Query embedding

Database embedding

Similarity

Retrived images

~

Wickstrgm et al. "A clinically motivated self-supervised approach for content-based image retrieval of CT liver images." CMIG 2023.
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RELAX analysis of feature extractor
 Imagenet feature extractor focus on edge information.

Query Retrived images

Wickstrgm et al. "A clinically motivated self-supervised approach for content-based image retrieval of CT liver images." CMIG 2023.
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RELAX analysis of feature extractor
 Feature extractor trained using our method focus on liver features.

Query Retrived images

18
Wickstrgm et al. "A clinically motivated self-supervised approach for content-based image retrieval of CT liver images." CMIG 2023.



Summary

* Explainability for representation learning
* RELAX — A simple approach

* Model agnostic



Towards Self-Explainable
Models



Why self-explaining models?

* Want inherently interpretable models

 Ensure faithfulness to computation

» Want to go beyond what the model is looking at

Test Image

Evidence for Animal Being a

Siberian Husky

Evidence for Animal Being a

Transverse Flute

Explanations Using
Attention Maps

Rudin. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence 2019
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ProtoVAE: A Trustworthy Self-Explainable
Prototypical Variational Model

Gautam, et al. "Protovae: A trustworthy self-explainable prototypical variational model." NeurlPS 2022.
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Concept/Prototypical Self-Explainable Models

Self-Explainable Models: Provides predictions and explanations at the same time.

Prototypical Self-Explainable Models: Learns representatives of the class

b ; _.\ . 1 v —_— | o J‘f
< I o .
S I v S, .
[oT)) . ’
@] l e & ', J (\ .
A y |
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Predicates for a self-explainable model

Transparent



Revisit Prior Self-Explainable Models

max pool
3.954 5.030 | Black footed albatross
5.443 | Indigo bunting
1.447 4.738 | Cardinal
© 27.895| Clay colored sparrow
H s
@
@
2617 5662 | Common yellowthroat
Similarity score
L A P 4 A J
RS N Y
Convolutional layers f Prototype layer g, Fully connected layer A Output logits
25

Chaofan, et al. "This looks like that: deep learning for interpretable image recognition.” NeurlPS 20109.



Revisit Prior Self-Explainable Models

1 L
in — Y CrsEnt(h ), ¥1) + MClst + oS
p’fﬂiﬂmn; rsEnt(h o gp o f(xi),y3) + A1Clst + AaSep

mn

Clst = — min min |z —p,3
n P j:p; EPy, z€patches(f(x;))

1 : : 2
Sep = —— min min |z — pjl5

n P J:p; P, z€patches(f(x;))

Chaofan, et al. "This looks like that: deep learning for interpretable image recognition." NeurlPS 2019.
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SENN
ProtoPNet
SITE
FLINT

ProtoVAE

Transparency

Diversity

Trustworthiness
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ProtoVAE

Transparent architecture

| T

encoder

21212121212121217

¢K1

¢KM

prototypes
of class K

classifier

8)

=)
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ProtoVAE

Diversity and trustworthiness through loss

pred —

£Pr0t0VAE — £pred + £orth + EVAE

— .

z CE(h(s:); ¥i)

Inter-class diversity

Lyar =

Eorth — Z ||‘i)£{i)k‘ - IMH%’
k=1

Intra-class diversity

ZH"BZ mz||2+zzyz(k f/;(k,j) DKL(N(”?Z:‘T'E)HN(stjvld))
k=1j=1 >_i=18i(k,1)

Robust classification and reconstruction
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Predictive performance

Black-box encoder FLINT SENN *SITE ProtoPNet ProtoVAE
MNIST 99.240.1 99.4+0.1 98.81+0.7 08.8 94.71+0.6 99.4+0.1
fMNIST 91.51+0.2 91.5+0.2 88.31+0.3 - 85.4+0.6 91.9+0.2
CIFAR-10 83.9+0.1 79.6+0.6 76.3+0.2 84.0 67.84+0.9 84.6+0.1
QuickDraw 86.71+0.4 82.6+1.4 79.3+0.3 - 58.7+0.0 87.5+0.1
SVHN 92.31+0.3 90.8+0.4 91.54+04 - 88.6+0.3 92.2+0.3

Results for accuracy (in %) for ProtoVAE and comparison with other state-of-the-art methods. *Results for SITE are taken from the original
paper and thus based on more complex architectures.



Prototypes

\
P ; o.‘
B B
\ﬁ.s .

set with ProtoVAE



Self-explainable Model with high-res prototypes

Counterfactual Generation
in Latent Space

Class smiling

Class not-smiling

Haselhoff, Anselm, et al. "The Gaussian Discriminant Variational Autoencoder (GdVAE): A Self-Explainable Model with Counterfactual Explanations." ECCV 2024.



Bridging post-hoc and self-explainable models

Prototype

Black-box
encoder

f

5 random test images activating
5 prototypes of class 'dog'. Since
we use 1-nearest neighbor
classifier, the classification
conveniently depends on the

cat deer » dog horse closest prototype.

linear classifier

: r 1 ®
Black-box ! .g‘ .

Gautam et al. "Prototypical Self-Explainable Models Without Re-training” TMLR 2024. 3



Bridging post-hoc and self-explainable models

Transp.

5

Input Prototype

. o
e
P

Looks}
' like

——o— FLINT —e— ProtoVAE
ProtoPNet —4— R34+KMEXx

Gautam et al. "Prototypical Self-Explainable Models Without Re-training” TMLR 2024. 34
Gautam et al. "This looks more like that: Enhancing self-explaining models by prototypical relevance propagation." Pattern Recognition 2023



Conclusion

* Opening up the black-box
 Self-explainable deep learning models

* Active area of development
* Best of both worlds



Northern Lights
Deep Learning Conference

Tromse, January

nldl.org

International conference
Great Keynote Speakers

Winter school
Diversity in Al, industry event
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