

UNIVERSITÄT BERN

ARTORG CENTER BIOMEDICAL ENGINEERING RESEARCH

DWARF: Disease-weighted network for attention map refinement

Haozhe Luo^{1,2}

Supervisor: Oana Inel¹, Abraham Bernstein¹, Mauricio Reyes²

¹ University of Zurich ² ARTORG Center for Biomedical Engineering Research, University of Bern

Background

- The accuracy of AI assisted diagnostics is improving
- The interpretability of AI diagnostics is still dissatisfying \$\$

Unaligned attention

Attention is **not wellfocused** on relevant diagnostic areas.

Aligned attention

Attention **aligns well** with relevant diagnostic areas.

Previous work:

(1) Unsupervised attention alignment

Figure 2: The proposed grid attention block. The global gate signal \mathbf{g}_I is shared for the region indicated in red. Tensor dimensions for the compatibility score computation are shown.

(2) Supervised attention alignment for Categorical Classification

Hypothesis

Improving attention alignment also enhances classification performance.

Attention guidance

Unaligned attention map

Aligned attention map! CLS performance improves!

Related work: Vision Language Model

[1] Tiu E, Talius E, Patel P, et al. Expert-level detection of pathologies from unannotated chest X-ray images via self-supervised learning[J]. Nature Biomedical Engineering, 2022, 6(12): 1399-1406.

[2] Wu C, Zhang X, Zhang Y, et al. Medklip: Medical knowledge enhanced language-image pre-training for x-ray diagnosis[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023: 21372-21383.

Dwarf: Disease-weighted attention map refinement network

Problem Definition

The goal is to optimize a **multi-label classification** model in medical imaging, incorporating the use of cross-attention feature maps to enhance interpretability. The optimization problem can be formulated as follows:

 $\min_{\theta} L_{total}(\theta) = \lambda L_{cls}(\theta) + (1 - \lambda)L_{atten}(\theta)$

where:

- θ represents the parameters of the model.
- • $L_{total}(\theta)$ is the total loss function to be minimized.
- • $L_cls(\theta)$ is the loss function associated with the multi-label classification accuracy.
- • $L_{atten}(\theta)$ corresponds to the loss function for reducing distance between generated attention map and clinicians' attention.
- $\bullet \lambda$ is a loss weight hyperparameter

The objective is to simultaneously enhance the **classification** performance and the **grounding** performance provided by the cross-attention maps.

Introducing additional heads

Identity Enhanced Initialization, IEI

- With **randomly initialized heads**, we observed that the heads are encouraged to learn fixed pattern. (trivial solution)
- We propose Identity Enhancement Initialization (IEI) for different disease's heads' parameter initialization.
- With IEI the expert head's parameters are initialized with **Identity Matrix** (Identity mapping)

Effusion

False Positive Suppression

$$\mathcal{L}_{\text{Dice}} = 1 - \frac{2 \cdot X \cap Y + \alpha + \epsilon}{X + Y + \alpha + \epsilon}$$

Positive samples were used during optimization for attention guidance.

Network tend to **overestimate**, propose FPS to suppress that issue.

adjusted
$$\mathbf{Y} = \mathbf{Y} + (w_{\rm FP} - 1) \cdot {\rm FP}$$

Atelectasis

$$\mathcal{L}_{ ext{seg}} = 1 - rac{2 \cdot (X \cap Y) + lpha + \epsilon}{X + ext{adjusted}Y + lpha + \epsilon}$$

Datasets:

ChestX-Det

13 pathologies:

Atelectasis 2. Calcification 3. Cardiomegaly
 Consolidation 5. Diffuse Nodule 6. Effusion
 Emphysema 8. Fibrosis 9. Fracture 10. Mass
 Nodule 12. Pleural Thickening 13.
 Pneumothorax

Annotation types: bbox, polygons

Dataset size: 3578 images

Vindr-CXR

13 pathologies:

1. Atelectasis 2. Calcification 3. Cardiomegaly

4. Consolidation 5. Diffuse Nodule 6. Effusion

7. Emphysema 8. Fibrosis 9. Fracture 10. Mass 11. Nodule 12. Pleural Thickening 13.

Pneumothorax

Annotation types: bbox

Dataset size: 15000 Images

Baselines:

Pretrained Vision-language Model: KAD, DeViDe **Finetuned** Vision-language Model: GAIN

CheXlocalize

10 pathologies:

1. Airspace opacity 2. Atelectasis 3. Cardiomegaly 4. Consolidation 5. Edema 6. Enlarged cardiomediastinum 7. Lung lesion 8. Pleural effusion 9. Pneumothorax 10. Support devices

Annotation types: bbox, polygons

Dataset size: 234 images

Metrics

(1) Dice:

(2) AUC:

(3) F1 score:

$$F1 = \frac{2 \times Precision \times Recall}{Precision + Recall}$$

(4) MCC:

$$MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$

Results of different datasets

[1] Luo H, Zhou Z, Royer C, et al. DeViDe: Faceted medical knowledge for improved medical vision-language pre-training[J].
[2] Zhang X, Wu C, Zhang Y, et al. Knowledge-enhanced visuallanguage pre-training on chest radiology images[J]. Nature Communications, 2023, 14(1): 4542.

[3] Li K, Wu Z, Peng K C, et al. Tell me where to look: Guided attention inference network[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 9215-9223.

Method	Dataset	AUC (%)	F1 Score (%)	MCC (%)	Dice (%)	Model Type
DeViDe[1]	ChestX Det	74.24	42.66	34.29	13.66	Pretrained VLM
KAD[2]	ChestX Det	73.81	40.07	31.48	13.89	Pretrained VLM
GAIN[3]	ChestX Det	80.9	58.97	62.65	13.09	Finetuned VLM
DWARF	ChestX Det	81.94	59.13	49.87	18.24	Finetuned VLM
DeViDe	cheXlocalize	72.26	41.66	30.79	59.83	Pretrained VLM
KAD	cheXlocalize	72.22	41.52	31.53	11.58	Pretrained VLM
GAIN	cheXlocalize	84.44	62.68	58.82	11.91	Finetuned VLM
DWARF	cheXlocalize	84.83	63.44	63.14	13.4	Finetuned VLM
DeViDe	Vindr CXR	72.92	41.01	27.98	7.06	Pretrained VLM
KAD	Vindr CXR	73.19	40.22	30.73	7.19	Pretrained VLM
GAIN	Vindr CXR	78.51	45.77	35.91	7.23	Finetuned VLM
DWARF	Vindr CXR	80.01	47.05	39.55	10.21	Finetuned VLM

DWARF achieves enhanced Stability across disease numbers

Hard-to-segment findings

DWARF Enhances Clinicians' Confidence in Classification Models

20 comparisons from ChestXDet dataset covering **Atelectasis, Cardiomegaly, Consolidation, and Effusion.** Clinicians preferred DWARF in 82.5% of cases.

Which one is better?

Principle : Accuracy and Specificity

Preference of clinicians?

Multi spots!

Compared to the Intersection, Specificity is important!

Ablations

Segmentation expert heads

Prompts

Method	Max DICE	Max AUC	Method	Dataset	Max DICE	Max AUC
Directly optimize	0.2288	0.8663	Finding name	ChestX-Det	0.1805	0.8157
Introducing segmentation expert heads	0.3559	0.8732	Finding Description	ChestX-Det	0.1769	0.8125

Example:

- Finding name: Effusion
- **Description:** Excess fluid around the lungs

Segmentation teachers' performance

4	diseases
---	----------

7 diseases

Split the 13 findings to 3 versions according to its performance and morphological differences

Finding name	Dice Score
Atelectasis	0.3031
Calcification	0.0073
Cardiomegaly	0.8342
Consolidation	0.4288
Diffuse Nodule	0.4441
Effusion	0.3525
Emphysema	0.4355
Fibrosis	0.1621

Fracture	0.0755
Mass	0.4583
Nodule	0.0355
Pleural Thickening	0.1355
Pneumothorax	0.0707

The segmentation teachers are trained with UNet architecture

Ablations about Training with segmentation model teachers

Method	Dataset	Disease numbers	Attention map DICE (Mean DICE across all diseases)	AUC	Max DICE	Max AUC
GAIN	ChestX-Det	7	0.1438	0.8680	0.1438	0.8680
DWARF (expert teachers)	ChestX-Det	7	0.3171	0.8473	0.3694	0.8757
DWARF	ChestX-Det	7	0.3856	0.8578	0.3911	0.8766

Ablations about the scalability

Method	Dataset	Epoch number	Finding number s	DICE	AUC
DWARF	ChestX- Det	500	13	0.1805	0.8157
DWARF	ChestX- Det	1000	13	0.2302	0.8231

Contributions:

- A novel training framework that optimize **both classification** and **attention maps**;
- A stable and scalable framework which could also be optimized with pseudo labels;
- A performance that surpasses existing **SoTA pretrained/finetuned** baselines.
- Throughout designed validation to narrow the gap between DWARF and clinical application;

Limitations:

- More findings need to be validated on, currently we only evaluate around 20 findings in total;
- More baselines need to be finetuned with our method and validate;
- Samples for clinicians' preference test are limited.

Thanks for the listening!