

Interpretability of Uncertainty: Exploring Cortical Lesion Segmentation in Multiple Sclerosis

Nataliia Molchanova, Alessandro Cagol, Pedro M. Gordaliza. Mario Ocampo-Pineda, Po-Jui Lu, Xinjie Chen, Matthias Weigel, Adrien Depeursinge, Henning Müller, Cristina Granziera, Meritxell Bach Cuadra

6th of October 2024

iMIMIC Workshop @ MICCAI 2024

This work was supported by the Hasler Foundation Responsible AI programme (MSxplain project)

Introduction

Uncertainty quantification

- Uncertainty quantification (UQ) helps to assess the reliability of the DL model predictions
- Sources of predictive uncertainty in DL
- Sources of uncertainty in **medical imaging**:
 - Limited resolutions
 - Errors in annotations
 - Low data regimes
 - Domain shifts

. . .

© CIBM | Center for Biomedical Imaging | N. Molchanova

UQ for medical imaging segmentation

CIBM.CH

© CIBM | Center for Biomedical Imaging | N. Molchanova

Nair et al., Med. Image Anal., 2020; Lambert et al., MICCAI UNSURE 2022; Molchanova et al., ISBI, 2023

Research objectives

Uncertainty has a strong relationship with model errors: ↑ uncertainty ~ ↑ likelihood of errors

- Analysis interpreting uncertainty values:
 - Detecting biases in model behaviour
 - Assessing the sanity of uncertainty values
 - Extracting information beyond errors
- **Proposed analysis:** explaining the variability in the lesion-scale uncertainty in terms of relevant lesion features

Materials and Methods

- Data provider: Basel University Hospital, Switzerland
- Cortical lesions (CL) are annotated on 3T MP2RAGE MRI scans (Magnetom Prisma, Siemens Healthineers) by a consensus of two radiologists
 - Train:val:test = **79:8:30 patients**, corresponding to **859:69:302 CLs**

I. Model training

Predicted lesion mask

Input MRI scan

UQ methods:

- 1. Deep ensembles (DE)
- 2. Monte Carlo dropout (MCDP)

Lesion-scale uncertainty map

CIBM.CH

Çiçec et al., MICCAI, 2016; Lakshminarayanan et al, NIPS 2017; Gal and Ghahramani, ICML 2016.

II. Lesion uncertainty computation

Lesion structural uncertainty (LSU) measure

$$LSU = 1 - \frac{1}{M} \sum_{m=0}^{M-1} IoU(L, L^m)$$

CIBM.CH

Molchanova et al., ISBI, 2023; Molchanova et al., Under revision Comput. Biol. Med., 2023.

III. Lesion features computation

© CIBM | Center for Biomedical Imaging | N. Molchanova

¹Griethuysen et al., Cancer Res., 2017; ²Grabner et al., MICCAI, 2016; ³Rottmann et al, IJCNN, 2020.

IV. Uncertainty regression model

Lesion uncertainty regression pipeline

Model selection: grid search cross-validation

Feature importance analysis: repeated 10 times with different random seeds

Results

Regression quality

Coefficient of determination R2 (↑) of ElasticNet model explaining uncertainty

	Cross validation (train set)						
	Only IoU	No IoU	All				
DE	0.520±0.006	0.598±0.004	0.661±0.004				
MCDP	0.393±0.006	0.589±0.014	0.604±0.013				

Regression quality

Coefficient of determination R2 (↑) of ElasticNet model explaining uncertainty

	Cross	validation (tra	in set)			Test	set		
	Only IoU	No IoU	All	Only	y loU	No l	oU	All	
DE	0.520±0.006	0.598±0.004	0.661±0.004	0.431	±0.001	0.512±	0.002	0.632±0	.004
MCDP	0.393±0.006	0.589±0.014	0.604±0.013	0.261	±0.003	0.425±	0.013	0.494±0	0.004

Feature importances

Deep ensemble

Sampled lesion examples

- Clinical feedback: these factors are likely to be associated with lower annotators confidence and higher inter-rater disagreement
- Location features lack interpretability from the clinical perspective, however might be related to lesion visibility

Conclusions

- Proposed analysis aims at explaining instance-wise uncertainty values
- Strong relationship with error additioned by other factors (texture, shape, etc.)
- Clinical feedback reveals that additional factors are associated with low annotator confidence

Unexplained uncertainty:

- non-linear relationships
- lack of relevant features
- UQ quality
- Future work:
 - unexplained uncertainty
 - structured clinical feedback
 - outliers analysis

THANK YOU FOR YOUR ATTENTION

Conclusions

Factors associated with high lesion uncertainty:

- Prediction quality
- Inhomogeneous textures
- Elongated and spiculated shapes
- Small lesions
- Location at the periphery of the occipital and temporal left lobes
- Absence of high intensity voxels within the lesion

Clinical perspective: these factors are likely to be associated with lower annotators confidence and higher inter-rater disagreement

Unexplained uncertainty: linear model for explanations, incomplete features, UQ quality

Distribution of lesion uncertainty

Train data

Distribution of lesion uncertainty

Test data

Feature importances

Monte Carlo dropout

Results: Random forest explainer

Test MSE	Test MAE	Test Explained Var.	Test R2	CV R2
0.014307	0.08503	0.661889	0.652084	0.64692

23

III. Lesion features computation

UQ in multiple sclerosis lesion segmentation

Voxel-scale uncertainty map

Lesion-scale uncertainty map

White matter lesions

Cortical lesions

CIBM.CH

Nair et al., Med. Image Anal., 2020; Lambert et al., MICCAI UNSURE 2022; Molchanova et al., ISBI, 2023

UQ for medical imaging segmentation

© CIBM | Center for Biomedical Imaging | N. Molchanova