

TextCAVs: Debugging Vision Models Using Text

iMIMIC @MICCAI 2024 Angus Nicolson, Yarin Gal, Alison Noble

Interpretability

- The ability to explain or present in terms understandable to a human
- A valid aim, but as a goal in of itself, this is difficult to optimise or to measure
- Instead, let's measure how useful interpretability tools are at performing specific tasks, e.g.
 - Improve user trust
 - Improve user performance
 - Debug a model
 - Discover harmful biases

Interpretability

- The ability to explain or present in terms understandable to a human
- A valid aim, but as a goal in of itself, this is difficult to optimise or to measure
- Instead, let's measure how useful interpretability tools are at performing specific tasks, e.g.
 - Improve user trust
 - Improve user performance
 - Debug a model
 - Discover harmful biases

Testing with Concept Activation Vectors (TCAV)

- Explains deep learning models in terms of concepts
- Concepts can be of a variety of different types and are defined by probe datasets of concept examples
 - Textures
 - Striped, spotty, banded
 - Colour
 - Red, blue, bright, dark
 - Basic shapes
 - Circles, squares, triangles
 - Context dependent objects
 - Wheels, windows, the shape of the sylvian fissure
 - Other

4

• Chess tactics (e.g. king safety, passed pawns)

- A) Example images representing a concept
- B) Activations extracted from sub-layer of the network
- C) Train a linear classifier with your concept/random images as the two classes. CAV is the vector orthogonal to the decision boundary (in activation space).

Testing with CAVs(TCAV)

A) Example images representing a conceptB) Example images of target classC) Activations extracted from sub-layer of the

D) Train a linear classifier. CAV is the vector orthogonal to the decision boundaryE) Directional derivative

network

Yuksekgonul M, Wang M, Zou J. Post-hoc Concept Bottleneck Models. arXiv; 2023 Moayeri M, Rezaei K, Sanjabi M, Feizi S. Text2Concept: Concept Activation Vectors Directly From Text. CVPR 2023

Shipard J. Wiliem A. Thanh KN. Xiang W. Fookes C. Zoom-shot: Fast and Efficient Unsupervised Zero-Shot Transfer of CLIP to Vision Encoders with Multimodal Loss, arXiv: 2024

7

- But if we reverse the linear layer...
 - Map text encodings from $CLIP \rightarrow target model feature$ space
 - Use these features as CAVs
 - A single forward pass to create a new CAV

Features

TextCAVs

TextCAVs - Training h

Reconstruction Loss $\mathcal{L}_{mse} = ||h(I_{\Psi}) - I_{\Phi}||^2$ $+ ||g(I_{\Phi}) - I_{\Psi}||^2$

Cycle Loss $\mathcal{L}_{cyc} = ||h(g(I_{\Phi})) - I_{\Phi}|| + ||g(h(I_{\Psi})) - I_{\Psi}|| + ||g(h(T_{\Psi})) - T_{\Psi}||$

TextCAVs - Explanations

- We can measure the sensitivity of the model to a concept by calculating the directional derivative
 - i.e., the similarity between A CAV, $m{v}_c$, and the gradient of the logit output with respect to the activations, $abla \Phi_{b,k}$.
- If Φ_b is linear, then its gradient does not depend on the activations, so we can calculate the directional derivative without any images

$$S_{c,k}(\boldsymbol{x}) S_{\overline{c},k} = b_{b,k} (\boldsymbol{x}) \cdot \boldsymbol{v}_{c}$$

ImageNet

- A quick sense-check
 - Do the explanations look plausible for ImageNet?
- We used a LLM to generate a list of concepts and then ranked the concepts by directional derivative

bullfrog	albatross	orangutan	bucket	cellphone
american bullfrog	gannet	orangutan	crab buckets	mp3 player
green frog	seagull	howler monkey	diaper pail	phone
boreal toad	sea eagle	macaque	bucket	phone case
western toad	shearwater	tarsier	laundry basket	memory card
frog	gull	great ape	watering can	walkman
musk turtle	white-tailed eagle	long-nosed monkey	flower pot	cordless phone
snapping turtle	petrel	gibbon	cooking pot	bluetooth
toad	merganser	gorilla	dustbin	$\operatorname{smartwatch}$
terrapin turtle	wading bird	langur	fishing basket	card reader

MIMIC-CXR

- We demonstrate that TextCAVs can be used in a medical domain
- MIMIC-CXR: Chest X-Rays with associated clinical reports
- 14 different classes, each assigned based off the clinical reports

FINAL REPORT
XAMINATION: CHEST (PA AND LAT)
NDICATION:F with chest pain // ?pna
OMPARISON:
INDINGS:
A and lateral views of the chest provided. Lung volumes are somewhat low. here is no focal consolidation, effusion, or pneumothorax. The

cardiomediastinal silhouette is normal. Imaged osseous structures are intact No free air below the right hemidiaphragm is seen.

IMPRESSION:

No acute intrathoracic process

Model Training

- We trained a ResNet50 on a 5-way multi-label classification task:
 - No Finding
 - Atelectasis (collapsed lung)
 - Cardiomegaly (enlarged heart)
 - Edema (fluid in the lungs)
 - Pleural effusion (fluid between the lungs and chest wall)
- Mean AUC: 0.831
- Mean Acc: 81.7 %

Which concepts?

- Extract each sentence from the "FINDINGS" and "IMPRESSION"
- Use a random subset of 5000 sentences to obtain a wide variety
- In future work we'd like to use a handcrafted list/interactive session with a radiologist

FINAL REPORT EXAMINATION: CHEST (PORTABLE AP) INDICATION: ___ year old woman with CNS lymphoma, // assess for pleural effusion prior to giving methotrexate

COMPARISON: ____ at 15:58

FINDINGS:

Again seen is the indwelling right-sided catheter, with tip over distal SVC. In addition, there is a new right-sided PICC line, with tip overlying the right atrium. No pneumothorax detected.

Inspiratory volumes are low and the right hemidiaphragm remains elevated, with opacity at the right base, similar to prior. Minimal patchy opacity in the retrocardiac region is improved slightly. No gross effusion is detected on this AP view. No definite change in the cardiomediastinal silhouette.

Focal opacity the left upper zone represent artifact due to overlap of the first anterior and fifth posterior left ribs.

IMPRESSION:

No gross effusion detected on either side, but smaller posterior effusions would not be apparent on this film. If clinically indicated, a lateral view could help for further assessment of posterior fusions.

Continued opacity at the right lung base, similar prior. This is new compared with ____, but similar the most recent prior study. This most likely represents atelectasis, but amount in appropriate clinical setting, an infectious consolidation could have similar appearance.

Mild patchy opacity at the left base is improved compared with ___.

New right PICC line tip overlies the right atrium. Clinical correlation is requested.

Example explanations

DEPARTMENT OF ENGINEERING SCIENCE

- Some are clearly linked to the class
 - "The lungs are clear"
 - "increasing atelectasis"
 - "Heart size continues to be mildly enlarged"
- Others are not
 - "There is a fracture of the upper most sternal wire, unchanged."
 - "Nasogastric tube extends below the hemidiaphragm and out of view"

No Findi	ng	Atelectasis	Cardiomegaly
The lungs	are clear and t	he Nasogastric tube extends be	- Marked cardiac enlargemen
cardiac, m	ediastinal, and h	ni- low the hemidiaphragm and	l as before and unchanged
lar contour	rs are normal.	out of view.	position of previously de
			scribed metallic prosthesis o
			porcine type.
Normal o	chest radiograp	oh Interval placement of a basi	Heart size continues to be
with unre	markable appea	ar- lar right sided pleural space	mildly enlarged.
ance of the	lung parenchyn	na pigtail catheter with im-	-
and norm	al appearance	of proved small right pleural ef-	-
the heart	and the medias	ti- fusion and right medial lung	r 5
nal and hi	ar contours.	base atelectasis.	
The trache	ea is slightly dev	vi- Worsening of the left retro	- The patient has undergon
ated to the	e right by the ac	or-cardiac o <u>pacity likely sec</u>	prior aortic valve replace
tic knob, w	which is ill-define	ed. ondary to increasing atelec	ment.
		tasis and/or effusion.	
This could	represent a gra	n- There is persistent elevation	n Dense retrocardiac opacity
uloma or p	possibly a bone :	is- of the left hemidiaphragm	n which could represent ef
land in the	e rib itself.	with evidence of Bochdale	κ fusion, atelectasis, consol
		hernia seen at the left lower	ridation or a combination
		hemithorax.	thereof.
There is a	fracture of the u	p-Stable opacification of the	e The heart continues to b
per most	sternal wire, u	n-mid and lower right lung	g enlarged with mild to mod
changed.		consistent with large locu	- erate CHF.
		lated pleural effusions and	1
		adjacent atelectasis.	

Sources of noise

D. Smilkov, et al., Smoothgrad: removing noise by adding noise. arXiv:1706.03825 (2017)

Biased Dataset

- How useful is TextCAVs for model debugging?
- We induced a dataset bias in MIMIC-CXR so that all participants with Atelectasis had a support device
 - (by removing all participants with Atelectasis and no Support Device)

Biased Model

Standard Test Set 1.0 1.0 0.8 0.8 True Positive Rate 9.0 True Positive Rate 9.0 0.2 0.2 No Finding (AUC=0.852) Atelectasis (AUC=0.685) Cardiomegaly (AUC=0.810) Edema (AUC=0.842) Pleural Effusion (AUC=0.884) 0.0 + 0.0 0.2 0.4 0.8 0.6 1.0 False Positive Rate

Biased Test Set

Biased explanations?

- All the top-5 explanations refer to Support Devices, and none refer to Atelectasis
- A clear change in model explantions, when model behaviour changes
- This indicates that TextCAVs can be used to debug models
- But it's not very quantitative...

No Finding	Atelectasis	Cardiomegaly
Bronchial wall thickening is	ET and NG tubes positioned	If cardiomegaly persists, the
minimal.	appropriately.	presence of a pericardial ef-
		fusion could be excluded
		with echocardiography.
Hilar and mediastinal con-	ET tube, nasogastric tube,	Worsening heart failure in
tours are otherwise normal.	Swan-Ganz catheter, and	the context of chronic atelec-
	midline drains are all in	tasis.
	standard placements.	
This could represent a gran-	Nasogastric tube extends be-	The patient has undergone
uloma or possibly a bone is-	low the hemidiaphragm and	prior aortic valve replace-
land in the rib itself.	out of view.	ment.
No discrete solid pulmonary	Impella LVAD and transve-	Moderate-to-severe car-
nodule are concerning mass.	nous atrioventricular pacer	diomegaly and stigmata of
	leads unchanged in their re-	previous mitral valve repair
	spective positions.	noted.
There is a fracture of the up-	Nasogastric tube has been	The heart remains moder-
per most sternal wire, un-	placed that extends well into	ately enlarged and the aorta
changed.	the stomach.	remains unfolded and tortu-
		ous.

Concept Relevance Score

- The concept relevance score (CRS) is simply the proportion of the top-N (N=50) TextCAVs that are related to the class
- As an example, a sentence was labelled as related to Edema if:
 - it directly diagnosed the class
 - Worsening cardiogenic pulmonary edema
 - or if the class was implied
 - bilateral parenchymal opacities
 - there is alveolar opacity throughout much of the right lung
- We also labelled the atelectasis TextCAVs on if they referred to support devices
 - Standard: 0.26(13/50)
 - Biased: 0.88(44/50)

Model	Standard		Biased		
Metric	AUC	CRS	AUC	AUC*	CRS
No Finding	0.87	0.74	0.85	0.94	0.76
Atelectasis	0.73	0.56	0.68	0.81	0.04
Cardiomegaly	0.81	0.94	0.81	0.82	0.90
Edema	0.85	0.90	0.84	0.81	0.80
Pleural Effusion	0.89	1.00	0.88	0.88	1.00
Mean	0.83	0.83	0.81	0.85	0.70

- We introduce TextCAVs, an interpretability method that can be used to provide textual explanations for image-based deep learning models
- Once two linear layers have been trained, new explanations can be generated with minimal compute and no imaging data
- We demonstrate that TextCAVs produce reasonable explanations for both natural images and chest X-ray imaging
- We show that TextCAVs can be used to debug models, finding dataset and model biases

Acknowledgments

Prof. Alison Noble

Prof. Yarin Gal

Engineering and Physical Sciences Research Council

Testing with CAVs(TCAV)

- A) Example images representing a conceptB) Example images of target class
- C) Activations extracted from sub-layer of the network

D) Train a linear classifier. CAV is the vector orthogonal to the decision boundaryE) Directional derivative

MIMIC-CXR

FINAL REPORT

EXAMINATION: CHEST (PORTABLE AP)

INDICATION: ____ year old woman with CNS lymphoma, // assess for pleural effusion prior to giving methotrexate

COMPARISON: ____ at 15:58

FINDINGS:

Again seen is the indwelling right-sided catheter, with tip over distal SVC. In addition, there is a new right-sided PICC line, with tip overlying the right atrium. No pneumothorax detected.

Inspiratory volumes are low and the right hemidiaphragm remains elevated, with opacity at the right base, similar to prior. Minimal patchy opacity in the retrocardiac region is improved slightly. No gross effusion is detected on this AP view. No definite change in the cardiomediastinal silhouette.

Focal opacity the left upper zone represent artifact due to overlap of the first anterior and fifth posterior left ribs.

IMPRESSION:

No gross effusion detected on either side, but smaller posterior effusions would not be apparent on this film. If clinically indicated, a lateral view could help for further assessment of posterior fusions.

Continued opacity at the right lung base, similar prior. This is new compared with ____, but similar the most recent prior study. This most likely represents atelectasis, but amount in appropriate clinical setting, an infectious consolidation could have similar appearance.

Mild patchy opacity at the left base is improved compared with ____.

New right PICC line tip overlies the right atrium. Clinical correlation is requested.