

Federico Spagnolo^{1,2,3,4}, Nataliia Molchanova^{4,5}, Mario Ocampo-Pineda^{1,2,3}, Lester Melie-Garcia^{1,2,3}, Meritxell Bach Cuadra^{5,6}, Cristina Granziera^{1,2,3}, Vincent Andrearczyk⁴, and Adrien Depeursinge^{4,7}

¹Translational Imaging in Neurology (ThINk) Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland

patient assessment.

²Department of Neurology, University Hospital Basel, Basel, Switzerland
 ³Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
 ⁴MedGIFT, Institute of Informatics, School of Management, HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland, Sierre, Switzerland
 ⁵CIBM Center for Biomedical Imaging, Lausanne, Switzerland
 ⁶Radiology Department, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
 ⁷Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital (CHUV), Lausanne, Switzerland

model's prediction.

1. Introduction

- 2. Methods
- 3. Results
- 4. Discussion
- 5. Conclusion

MS lesion segmentation

Fig.2 Axial slice of three MR images from a same MS patient, same visit.

Motivation

Fig.3 Output of a semantic segmentation network showing several instances of the considered class (top left). An XAI method (top right) applied to all the spatial predictions.

• Can we explain the segmentation of a lesion of interest?

If we have a **lesion-specific XAI**¹...

• How to exploit it?

¹Spagnolo, F., Molchanova, N., Schaer, R., Bach Cuadra, M., Ocampo-Pineda, M., Melie-Garcia, L., Granziera, C., Andrearczyk, V., Depeursinge, A.: Instance-level quantitative saliency in multiple sclerosis lesion segmentation. arXiv (2024). https://doi.org/10.48550/ARXIV.2406.09335.

Motivation

Fig.5 Instance-level saliency overlay on FLAIR, for a true positive case (a) and a false positive case (b).

	PRECISION	RECALL
@thr=.5	0.6265	0.7945
@thr=.8	0.6338	0.7848
@thr=1	0.6419	0.7778
@thr=1.5	0.7013	0.6983

Fig.4 Maximum (a) and minimum (b) distributions in XAI maps for true positive, false positive, false negative, and true negative volumes¹.

• Can we improve this trade off?

¹Spagnolo, F., Molchanova, N., Schaer, R., Bach Cuadra, M., Ocampo-Pineda, M., Melie-Garcia, L., Granziera, C., Andrearczyk, V., Depeursinge, A.: Instance-level quantitative saliency in multiple sclerosis lesion segmentation. arXiv (2024). https://doi.org/10.48550/ARXIV.2406.09335.

1. Introduction

2. Methods

- 3. Results
- 4. Discussion
- 5. Conclusion

Network

- 3D U-Net², inputs FLAIR and MPRAGE
- 687 MS patients (4023 acquisitions)
- 101 acquisitions as test
- Linear combination of normalized dice³ and blob loss⁴
- Pre-processing: registration to FLAIR space, bias field correction, z-score intensity normalization
- DSC of 0.60 and nDSC of 0.71

²Çiçek, O., Abdulkadir, A., Lienkamp, S. S., Brox, T., and Ronneberger, O. (2016). 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. arXiv.
 ³Raina, V., Molchanova, N., Graziani, M., Malinin, A., Muller, H., Cuadra, M. B., and Gales, M. (2023). Tackling Bias in the Dice Similarity Coefficient: Introducing NDSC for White Matter Lesion Segmentation. In 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), pages 1–5.
 ⁴F. Kofler, S. Shit, I. Ezhov, L. Fidon, I. Horvath, R. Al-Maskari, H. Li, H. Bhatia, T. Loehr, M. Piraud, A. Erturk, J. Kirschke, J. Peeken, T. Vercauteren, C. Zimmer, B. Wiestler, and B. Menze. blob loss: instance imbalance aware loss functions for semantic segmentation. arXiv, 2022

Instance-level saliency

We refer to the **lesion** domain Ω as a subset of the image domain with cardinality $|\Omega|$

Radiomics on XAI

DL segmentation

Trained WML segmentation model (on set Tr), probability output maps on test set Te

XAI maps generation

Generation of instance-level saliency maps (total of 4868)

Radiomics

Extraction of radiomic features from XAI maps of TPs/FPs (dilated masks)

19 first order

74 second order

- Gray Level
 Co-occurrence
- Gray Level Run Length
- Gray Level Size Zone
- Neighbouring Gray
 Tone Difference
- Gray Level Dependence

Classification

Training (on Tr) and testing (on Te) a logistic regression model to classify TP/FP

Bootstrap with test set to estimate confidence intervals of the performance

Introductio
 Methods
 Results
 Discussion
 Conclusion

Results

Fig.8 Normalized radiomic features showing the highest importance (top 10).

Fig.7 The TP case (a) obtained a score (LR) of 0.9398 for the positive class, while the FP (b) reported 0.0232 and was now classified as TN.

(b)

(a)

- Introductio
 Methods
 Results
- 4. Discussion
- 5. Conclusion

Discussion

 Maximum, minimum and mean values of XAI in the training and test set were compared, to exclude domain shift

Discussion

- Mean absolute deviation (MAD) strong positive: more intensity variability around mean in true positive examples.
- Square root of the mean (RMS) strong negative: false positives present more outliers?

Open questions:

- 1. How many features are enough?
- 2. Explore shape features?
- 3. Location of refined lesions?
- 4. Apply to different domains?
- 5. Refine false negatives? Use uncertainty estimation?

1. Introduction

- 2. Methods
- 3. Results
- 4. Discussion

5. Conclusion

Conclusion

- Instance-level XAI (for segmentation task) can impact model performance and clinical practice
- Radiomic features on XAI can improve detection performance (F1 score) with a simple linear model
- First order features (RMS and MAD) seem to separate FP from TP the most

A SPECIAL THANKS TO THE TEAM!

N. Molchanova

M. Bach Cuadra

B. Spahr

HASLERSTIFTUNG

A. Malinin

J. Najm

P. Macias Gordaliza

A. Depeursinge

C. Granziera

C. Evans

D. Ribes

P.J. Lu

A. Cagol

M. Gales

V. Raina

